Verification of Shell Scripts Performing File Hierarchy Transformations

Ph.D. Defence

Nicolas Jeannerod

Institut de Recherche en Informatique Fondamentale
Université de Paris

March 30, 2021

Software Installation

Debian GNU/Linux

Debian GNU/Linux

Debian GNU/Linux

Linux distribution
~= Operating System

Widely used:

> as OS for servers

Debian GNU/Linux

Linux distribution
~= Operating System

Widely used:

- > as OS for servers
- > as OS for desktop computers

Debian GNU/Linux

Linux distribution
~= Operating System

Widely used:

- > as OS for servers
- > as OS for desktop computers
- > as basis for derived
 distributions eg. Ubuntu

root@debian:~#

Software Installation in Debian GNU/Linux

Debian GNU/Linux

Linux distribution ~= Operating System

Widely used:
> as OS for servers

- > as OS for desktop computers
- > as basis for derived
 distributions eq. Ubuntu

root@debian:~# apt install firefox

Debian GNU/Linux

Linux distribution ~= Operating System

Widely used:

- > as OS for servers
- > as OS for desktop computers
- > as basis for derived
 distributions eg. Ubuntu

root@debian:~# apt install firefox

Software Installation in Debian GNU/Linux

Reading package lists... Done
Building dependency tree
The following NEW packages will be installed:
 firefox
O upgraded, 1 newly installed, O to remove and O no

Debian GNU/Linux

Linux distribution ~= Operating System

Widely used:

- > as OS for servers
- > as OS for desktop computers
- > as basis for derived
 distributions eg. Ubuntu

```
root@debian:~# apt install firefox
Reading package lists... Done
Building dependency tree
```

The following NEW packages will be installed: firefox

0 upgraded, 1 newly installed, 0 to remove and 0 no

Need to get 51.3 MB of archives.

Get:1 http://deb.debian.org/debian unstable/main an
Fetched 51.3 MB in 5s (9,569 kB/s)

Linux distribution

~= Operating System

Widely used:

- > as OS for servers
- > as OS for desktop computers

Debian GNU/Linux

> as basis for derived distributions - eg. Ubuntu

```
root@debian:~# apt install firefox
Reading package lists... Done
Building dependency tree
The following NEW packages will be installed:
 firefox
0 upgraded, 1 newly installed, 0 to remove and 0 no
Need to get 51.3 MB of archives.
Get:1 http://deb.debian.org/debian unstable/main an
Fetched 51.3 \text{ MB} in 5s (9.569 \text{ kB/s})
Preparing to unpack .../firefox 74.0.1-1 amd64.deb
Unpacking firefox (74.0.1-1) ...
Setting up firefox (74.0.1-1) ...
Processing triggers for man-db (2.9.1-1) ...
Processing triggers for mime-support (3.64) ...
Processing triggers for gnome-menus (3.36.0-1) ...
```

Debian GNU/Linux

Linux distribution ~= Operating System

Widely used:

- > as OS for servers
- > as OS for desktop computers
- > as basis for derived
 distributions eg. Ubuntu

```
root@debian:~# apt install firefox
Reading package lists... Done
Building dependency tree
The following NEW packages will be installed:
 firefox
0 upgraded, 1 newly installed, 0 to remove and 0 no
Need to get 51.3 MB of archives.
Get:1 http://deb.debian.org/debian unstable/main an
Fetched 51.3 MB in 5s (9.569 \text{ kB/s})
Preparing to unpack .../firefox_74.0.1-1_amd64.deb
Unpacking firefox (74.0.1-1) ...
Setting up firefox (74.0.1-1) ...
Processing triggers for man-db (2.9.1-1) ...
Processing triggers for mime-support (3.64) ...
Processing triggers for gnome-menus (3.36.0-1) ...
root@debian:~#
```

Debian GNU/Linux

Linux distribution ~= Operating System

Widely used:

> as OS for desktop computers

> as basis for derived
distributions - eq. Ubuntu

o firefox_74.0-1_amd64.deb

firefox_74.0-1_amd64.deb

/etc/firefox/firefox.js

```
/usr/bin/firefox
/usr/lib/firefox/application.ini
/usr/lib/firefox/browser/blocklist.xml
/usr/lib/firefox/browser/chrome
/usr/lib/firefox/browser/crashreporter-override.ini
/usr/lib/firefox/browser/defaults
/usr/lib/firefox/browser/features/doh-rollout@mozilla.or
/usr/lib/firefox/browser/features/formautofill@mozilla.or
```

/usr/lib/firefox/browser/features/screenshots@mozilla.or

/usr/lib/firefox/browser/features/formautofill@mozilla.or/usr/lib/firefox/browser/features/screenshots@mozilla.or

root@debian:~# apt install firefox Reading package lists... Done Building dependency tree The following NEW packages will be installed: firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Need to get 51.3 MB of archives. Get:1 http://deb.debian.org/debian unstable/main an Fetched 51.3 MB in 5s (9.569 kB/s)Preparing to unpack .../firefox 74.0.1-1 amd64.deb Unpacking firefox (74.0.1-1) ... Setting up firefox (74.0.1-1) ... Processing triggers for man-db (2.9.1-1) ... Processing triggers for mime-support (3.64) ... Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~#

User Request

root@debian:~# apt install firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Need to get 51.3 MB of archives. Get:1 http://deb.debian.org/debian unstable/main an Fetched 51.3 MB in 5s (9,569 kB/s) Preparing to unpack .../firefox 74.0.1-1 amd64.deb Unpacking firefox (74.0.1-1) ... Setting up firefox (74.0.1-1) ... Processing triggers for man-db (2.9.1-1) ... Processing triggers for mime-support (3.64) ... Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~#

User Request

Resolve
Dependencies

root@debian:~# apt install firefox Reading package lists... Done Building dependency tree The following NEW packages will be installed: firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Get:1 http://deb.debian.org/debian unstable/main an Preparing to unpack .../firefox_74.0.1-1_amd64.deb Unpacking firefox (74.0.1-1) ... Setting up firefox (74.0.1-1) ... Processing triggers for man-db (2.9.1-1) ... Processing triggers for mime-support (3.64) ... Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~#

User Request !Resolve Dependencies Download Package

root@debian:~# apt install firefox Reading package lists... Done Building dependency tree The following NEW packages will be installed: firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Need to get 51.3 MB of archives. Get:1 http://deb.debian.org/debian unstable/main an Fetched 51.3 MB in 5s (9,569 kB/s) Unpacking firefox (74.0.1-1) ... Setting up firefox (74.0.1-1) ... Processing triggers for man-db (2.9.1-1) ... Processing triggers for mime-support (3.64) ... Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~#

User Request !Resolve Dependencies Download Package Run preinst

root@debian:~# apt install firefox Reading package lists... Done Building dependency tree The following NEW packages will be installed: firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Need to get 51.3 MB of archives. Get:1 http://deb.debian.org/debian unstable/main an Fetched 51.3 MB in 5s (9,569 kB/s) Preparing to unpack .../firefox_74.0.1-1_amd64.deb Setting up firefox (74.0.1-1) ... Processing triggers for man-db (2.9.1-1) ... Processing triggers for mime-support (3.64) ... Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~#

User Request !Resolve Dependencies Download Package Run preinst Unpack files

root@debian:~# apt install firefox Reading package lists... Done Building dependency tree The following NEW packages will be installed: firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Need to get 51.3 MB of archives. Get:1 http://deb.debian.org/debian unstable/main an Fetched 51.3 MB in 5s (9,569 kB/s) Preparing to unpack .../firefox_74.0.1-1_amd64.deb Unpacking firefox (74.0.1-1) ... Processing triggers for man-db (2.9.1-1) ... Processing triggers for mime-support (3.64) ... Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~#

User Request !Resolve Dependencies Download Package Run preinst Unpack files Run postinst

root@debian:~# apt install firefox User Request Reading package lists... Done Building dependency tree !Resolve The following NEW packages will be installed: Dependencies firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Need to get 51.3 MB of archives. Download Get:1 http://deb.debian.org/debian unstable/main ar Package Fetched 51.3 MB in 5s (9,569 kB/s) Preparing to unpack .../firefox_74.0.1-1_amd64.deb Run preinst Unpacking firefox (74.0.1-1) ... Unpack files Setting up firefox (74.0.1-1) ... Run postinst Process !Triggers Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~#

Introduction

root@debian:~#

Software Installation in Debian GNU/Linux

Done

root@debian:~# apt install firefox User Request Reading package lists... Done Building dependency tree Resolve The following NEW packages will be installed: Dependencies firefox 0 upgraded, 1 newly installed, 0 to remove and 0 no Need to get 51.3 MB of archives. Download Get:1 http://deb.debian.org/debian unstable/main an Package Fetched 51.3 MB in 5s (9,569 kB/s) Preparing to unpack .../firefox_74.0.1-1_amd64.deb Run preinst Unpacking firefox (74.0.1-1) ... Unpack files Setting up firefox (74.0.1-1) ... Run postinst Processing triggers for man-db (2.9.1-1) ... Process Processing triggers for mime-support (3.64) ... !Triggers Processing triggers for gnome-menus (3.36.0-1) ...

Introduction

Software Installation in Debian GNU/Linux

root@debian:~# apt install firefox User Request Reading package lists... Done Building dependency tree Resolve The following NEW packages will be installed: Dependencies firefox 0 upgrade e and 0 nd We are running Shell scripts Need to Download le/main ar Get:1 htt ! Package Fetched 51.3 MB in 5s (9.569 kB/s)Preparing to unpack .../firefox 74.0.1-1 amd64.deb Run preinst Unpacking firefox (74.0.1-1) ... Unpack files Setting up firefox (74.0.1-1) ... Run postinst Processing triggers for man-db (2.9.1-1) ... Process Processing triggers for mime-support (3.64) ... !Triggers Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~# Done

root@debian:~# apt install firefox User Request Reading package lists... Done Building dependency tree Resolve The following NEW packages will be installed: Dependencies firefox 0 upgrade e and 0 nd We are running Shell scripts Need to Download with full privileges. Get:1 htt le/main an ! Package Fetched 51.3 MB in 5s (9.569 kB/s)Preparing to unpack .../firefox 74.0.1-1 amd64.deb Run preinst Unpacking firefox (74.0.1-1) ... Unpack files Setting up firefox (74.0.1-1) ... Run postinst Processing triggers for man-db (2.9.1-1) ... Process Processing triggers for mime-support (3.64) ... Triggers Processing triggers for gnome-menus (3.36.0-1) ... root@debian:~# Done

What Could Possibly Go Wrong?

From: "Aaron M. Ucko" <ucko@debian.org>

To: Debian Bug Tracking System <submit@bugs.debian.org> **Subject:** cmigrep: broken emacsen-install script

Date: Fri, 29 Jun 2007 20:27:06 -0400

Package: cmigrep Version: 1.3-1

Severity: critical

Justification: breaks unrelated software

cmigrep's emacsen-install script is overzealous; specifically, it
inappropriately attempts to compile all .el files in
/usr/share/emacs/site-lisp even if they don't work with the current
emacsen flavor (for instance, remembrance-agent's remem.el

> Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,
 - > remove your personal files.

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,
 - > remove your personal files.
- > Why it is hard? Because we manipulate:

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,
 - > remove your personal files.
- > Why it is hard? Because we manipulate:
 - > POSIX Shell scripts with:

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,
 - > remove your personal files.
- > Why it is hard? Because we manipulate:
 - > POSIX Shell scripts with:
 - > treacherous syntax,

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,
 - > remove your personal files.
- > Why it is hard? Because we manipulate:
 - > POSIX Shell scripts with:
 - > treacherous syntax,
 - > unusual, complex semantics;

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,
 - > remove your personal files.
- > Why it is hard? Because we manipulate:
 - > POSIX Shell scripts with:
 - > treacherous syntax,
 - > unusual, complex semantics;
 - > Unix filesystems: complex tree-like data structures;

- > Goal: applying formal methods to Shell scripts and to the quality assessment of Debian Packages in particular.
- > Goal (reformulated): making sure that installing/updating/removing software does not:
 - > make other software unusable,
 - > make the whole computer unusable,
 - > remove your personal files.
- > Why it is hard? Because we manipulate:
 - > POSIX Shell scripts with:
 - > treacherous syntax,
 - > unusual, complex semantics;
 - > Unix filesystems: complex tree-like data structures;
 - > and Unix utilities: transformations of such filesystems.

- > parser for POSIX Shell*
- > intermediary
 language*

- > parser for POSIX Shell*
- > intermediary
 language*

- > parser for POSIX Shell*
- > intermediary
 language*
- > feature trees
 logic FTS

- > parser for POSIX Shell*
- > intermediary
 language*
- > feature trees
 logic FTS
- > decision
 procedures
- > decidability results
- > efficiency considerations
- > implementation

- > parser for POSIX Shell*
- > intermediary
 language*
- > feature trees
 logic FTS
- > decision
 procedures
- > decidability results
- > efficiency considerations
- > implementation

- > parser for POSIX Shell*
- > intermediary
 language*
- > feature trees
 logic FTS
- > decision
 procedures
- > decidability results
- > efficiency considerations
- > implementation

- > parser for POSIX Shell*
- > intermediary
 language*
- > feature trees
 logic FTS
- > decision
 procedures
- > decidability results
- > efficiency considerations
- > implementation

Example Shell Script

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

test -e /usr/lib

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo
fi
```



```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib

Success

test -e /usr/lib/foo
```

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib

Success

test -e /usr/lib

Error

Success

S1
```

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib

Success

test -e /usr/lib

Error

Success

Error

Mkdir /usr/lib/foo
```

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

fi

fi

```
test -e /usr/lib
                                               Error
                          Success
              test -e /usr/lib/foo
           Success
                         Error
            S1
                    mkdir /usr/lib/foo
                   Success
                      S2
if ! test -e /usr/lib; then
  mkdir /usr/lib
if ! test -e /usr/lib/foo; then
  mkdir /usr/lib/foo
```

fi

fi

```
test -e /usr/lib
                                                Error
                          Success
              test -e /usr/lib/foo
           Success
                         Error
           S1
                    mkdir /usr/lib/foo
                   Success
                               Error
                     S2
if ! test -e /usr/lib; then
  mkdir /usr/lib
if ! test -e /usr/lib/foo; then
  mkdir /usr/lib/foo
```

fi

fi

```
test -e /usr/lib
                                                 Error
                           Success
              test -e /usr/lib/foo
                                                         mkdir /usr/lib
            Success
                          Error
            S1
                    mkdir /usr/lib/foo
                   Success
                               Error
                      S2
if ! test -e /usr/lib; then
  mkdir /usr/lib
if ! test -e /usr/lib/foo; then
  mkdir /usr/lib/foo
```


Backend Requirements

Logic Requirements:

> Express tree relations

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib
                         mkdir /usr/lib
                    Success
            test -e /usr/lib/foo
                          Error
         Success
          s3
                    mkdir /usr/lib/foo
                   Success
                      S4
```

Backend Requirements

Logic Requirements:

- > Express tree relations
- > Enough expressivity
 to specify Unix utilities

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib
                         mkdir /usr/lib
                    Success
             test -e /usr/lib/foo
          Success
                          Error
                    mkdir /usr/lib/foo
          S3
                   Success
                      S4
```

- > Express tree relations
- > Enough expressivity
 to specify Unix utilities
- > Express the composition
 of tree relations

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib
                         mkdir /usr/lib
                    Success
             test -e /usr/lib/foo
         Success
                          Error
                    mkdir /usr/lib/foo
          S3
                   Success
                      S4
```

- > Express tree relations
- > Enough expressivity
 to specify Unix utilities
- > Express the composition
 of tree relations
- > Detection of impossible cases

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib
                         mkdir /usr/lib
                    Success
             test -e /usr/lib/foo
         Success
                          Error
          S3
                    mkdir /usr/lib/foo
                   Success
                      S4
```

- > Express tree relations
- > Enough expressivity
 to specify Unix utilities
- > Express the composition
 of tree relations
- > Detection of impossible cases

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib
              Error
                        mkdir /usr/lib
                   Success
            test -e /usr/lib/foo
                          Error
                   mkdir /usr/lib/foo
                  Success
```

- > Express tree relations
- > Enough expressivity
 to specify Unix utilities
- > Express the composition
 of tree relations
- > Detection of impossible cases

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib
              Error
                        mkdir /usr/lib
                   Success
            test -e /usr/lib/foo
                          Error
                   mkdir /usr/lib/foo
                  Success
                     S4
```

- > Express tree relations
- > Enough expressivity
 to specify Unix utilities
- > Express the composition
 of tree relations
- > Detection of impossible cases
- > Incrementality

```
if ! test -e /usr/lib; then
mkdir /usr/lib

fi
if ! test -e /usr/lib/foo; then
mkdir /usr/lib/foo

fi
```

```
test -e /usr/lib
              --- Error
                        mkdir /usr/lib
                    Success
            test -e /usr/lib/foo
                          Error
                   mkdir /usr/lib/foo
                  Success
                      S4
```


Feature Trees

Feature Trees

9

Feature x[f]y

9

$$\begin{array}{cccc} \phi & \rho & \text{satisfies } \phi & \text{if} \\ \\ \text{Feature} & x[f]y & \rho(x)(f) = \rho(y) \\ \\ \text{Absence} & x[F] \uparrow & \text{dom}(\rho(x)) \cap F = \varnothing \\ \\ \text{Similarity} & x =_F y & \rho(x) =_F \rho(y) \end{array}$$

$$f \begin{vmatrix} x \\ y \end{vmatrix}$$

Feature

$$\begin{array}{cccc} \phi & \rho & \text{satisfies } \phi & \text{if} \\ \\ \text{Feature} & x[f]y & \rho(x)(f) = \rho(y) \\ \\ \text{Absence} & x[F] \uparrow & \text{dom}(\rho(x)) \cap F = \varnothing \\ \\ \text{Similarity} & x =_F y & \rho(x) =_F \rho(y) \end{array}$$

Feature

Absence

$$\begin{array}{cccc} \phi & \rho & \text{satisfies } \phi & \text{if} \\ \\ \text{Feature} & x[f]y & \rho(x)(f) = \rho(y) \\ \\ \text{Absence} & x[F] \uparrow & \dim(\rho(x)) \cap F = \varnothing \\ \\ \text{Similarity} & x =_F y & \rho(x) =_F \rho(y) \end{array}$$

$$\begin{array}{ccc}
x & & x \\
f & & f & \\
y & & \bot & \\
\end{array}$$
 $\times [F]$

Feature

Absence

$$\begin{array}{cccc} \phi & \rho & \text{satisfies } \phi & \text{if} \\ \\ \text{Feature} & x[f]y & \rho(x)(f) = \rho(y) \\ \\ \text{Absence} & x[F] \uparrow & \text{dom}(\rho(x)) \cap F = \varnothing \\ \\ \text{Similarity} & x =_F y & \rho(x) =_F \rho(y) \end{array}$$

Feature

Absence

Similarity

$$\begin{array}{cccc} \phi & \rho & \text{satisfies } \phi & \text{if} \\ \\ \text{Feature} & x[f]y & \rho(x)(f) = \rho(y) \\ \\ \text{Absence} & x[F] \uparrow & \text{dom}(\rho(x)) \cap F = \varnothing \\ \\ \text{Similarity} & x =_F y & \rho(x) =_F \rho(y) \end{array}$$

Equality

$$\begin{array}{cccc} \phi & \rho & \text{satisfies } \phi & \text{if} \\ \\ \text{Feature} & x[f]y & \rho(x)(f) = \rho(y) \\ \\ \text{Absence} & x[F] \uparrow & \text{dom}(\rho(x)) \cap F = \varnothing \\ \\ \text{Similarity} & x =_F y & \rho(x) =_F \rho(y) \end{array}$$

 ${\tt Equality}$

Update

mkdir /usr/lib/foo

mkdir /usr/lib/foo

```
\begin{array}{c|c}
 & \exists x \\
 & \exists x \\
 & \exists y \\
 & \exists y \\
 & \bot
\end{array}
```

Success case

mkdir /usr/lib/foo

$$r$$
 $= \mathbb{C}\{usr\}$ r' usr $\exists x$ $= \mathbb{C}\{1ib\}$ $\exists x'$ $\exists 1ib$ $\exists y$ $= \mathbb{C}\{foo\}$ $\exists y'$ foo \downarrow $\exists z'[\star] \uparrow$

Success case

mkdir /usr/lib/foo

$$r$$
 $= \mathbb{C}\{usr\}$ r' $r =_{\star} r'$
 $usr \mid usr \mid usr \mid usr$
 $\exists x = \mathbb{C}\{1ib\} = \exists x'$
 $\exists y = \mathbb{C}\{foo\} = \exists y'$
 $foo \mid foo$
 $\bot = \exists z'[\star] \uparrow$

Success case

Error case

mkdir /usr/lib/foo

Success case

Error cases

mkdir /usr/lib/foo

Success case

Error cases

mkdir /usr/lib/foo

$$r$$
 $= \mathbb{C}\{usr\}$ r' usr $| usr$ $\exists x$ $= \mathbb{C}\{1ib\}$ $\exists x'$ $| 1ib$ $| 1ib$ $\exists y$ $= \mathbb{C}\{foo\}$ $| foo$ \bot $\exists z'[\star] \uparrow$

Success case

mkdir /usr/lib/foo

Success case

Example Specification

name pattern \Rightarrow replacement (side-condition)

name pattern
$$\Rightarrow$$
 replacement (side-condition)
$$x = F \quad y \qquad x = F \quad y$$
 P-Feat-Sim $f \mid x = F \quad y$ $\Rightarrow f \mid f = F \quad y$

name
$$pattern \Rightarrow replacement (side-condition)$$

P-Feat-Sim $f \mid x = F = Y$

$$z \Rightarrow f \neq f$$

$$z \qquad \Rightarrow f \neq f$$

$$y \qquad z \qquad \Rightarrow f \qquad f \in F$$

C-Feat-Abs $f \mid y \Rightarrow f \neq f$

$$y \qquad z \qquad \Rightarrow f \qquad f \in F$$

The rules of \mathcal{R}_1 can be used to write:

```
function transform-1 (\phi : \Sigma_1-formula) : DXC
```


The rules of \mathcal{R}_1 can be used to write:

```
function transform-1 (\phi : \Sigma_1-formula) : DXC which:
```

> terminates on all inputs*,

The rules of \mathcal{R}_1 can be used to write:

```
function transform-1 (\phi : \Sigma_1-formula) : DXC which:
```

- > terminates on all inputs*,
- > given a Σ_1 -formula ϕ , returns a DXC ψ such that:
 - > ψ is equivalent to ϕ ,

The rules of \mathcal{R}_1 can be used to write:

```
function transform-1 ( \phi : \Sigma_1\text{-formula} ) : DXC which:
```

- > terminates on all inputs*,
- > given a Σ_1 -formula ϕ , returns a DXC ψ such that:
 - > ψ is equivalent to ϕ ,
 - > and the constraints of ψ are irreducible with respect to $\mathcal{R}_1.$

- > given a Σ_1 -formula ϕ , returns a DXC ψ such that:
 - > ψ is equivalent to ϕ ,
 - > and the constraints of ψ are irreducible with respect to $\mathcal{R}_1.$

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Garbage Collection)

Let c be a constraint irreducible with respect to \mathcal{R}_1 .

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Garbage Collection)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Let X be a set of variables ancestor-closed in c.

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Garbage Collection)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Let X be a set of variables ancestor-closed in c. Then:

$$\models ilde{\forall} \cdot ((\exists X \cdot c) \leftrightarrow \mathcal{G}_X(c))$$

literals of c
that do not contain variables in X

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Garbage Collection)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Let X be a set of variables ancestor-closed in c. Then:

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Garbage Collection)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Let X be a set of variables ancestor-closed in c. Then:

$$\models \tilde{\forall} \cdot ((\exists X \cdot c) \leftrightarrow \mathcal{G}_X(c))$$

literals of c

that do not contain

variables in X

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Garbage Collection)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Let X be a set of variables ancestor-closed in c. Then:

$$\models ilde{\forall} \cdot ((\exists X \cdot c) \leftrightarrow \mathcal{G}_X(c))$$

literals of c
that do not contain variables in X

Theorem (Satisfiability)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Then c is satisfiable.

Theorem (Garbage Collection)

Let c be a constraint irreducible with respect to \mathcal{R}_1 . Let X be a set of variables ancestor-closed in c. Then:

$$\models \tilde{\forall} \cdot ((\exists X \cdot c) \leftrightarrow \mathcal{G}_X(c))$$

transform-1 can be used as an incremental test of satisfiability!

```
mkdir /usr/lib mkdir /usr/lib/foo (success) (success)
```



```
mkdir /usr/lib mkdir /usr/lib/foo (success) (error: file exists)
```


> no quantifier elimination in the strict sense

$$\exists y \cdot (x[f]y \wedge y[\star]\uparrow)$$

> no quantifier elimination in the strict sense

$$\exists y \cdot (x[f]y \wedge y[\star]\uparrow)$$

> but: garbage collection removes existential quantifiers

> no quantifier elimination in the strict sense

$$\exists y \cdot (x[f]y \wedge y[\star]\uparrow)$$

- > but: garbage collection removes existential quantifiers
- > the others can be switched to universal

$$\neg x[f] \uparrow \land \forall y \cdot (x[f]y \rightarrow y[\star] \uparrow)$$

> no quantifier elimination in the strict sense

$$\exists y \cdot (x[f]y \wedge y[\star]\uparrow)$$

- > but: garbage collection removes existential quantifiers
- > the others can be switched to universal

$$\neg x[f] \uparrow \land \forall y \cdot (x[f]y \rightarrow y[\star] \uparrow)$$

> in general, we can transform any Σ_1 -formula into a Π_1 one

> no quantifier elimination in the strict sense

$$\exists y \cdot (x[f]y \wedge y[\star]\uparrow)$$

- > but: garbage collection removes existential quantifiers
- > the others can be switched to universal

$$\neg x[f] \uparrow \land \forall y \cdot (x[f]y \rightarrow y[\star] \uparrow)$$

- > in general, we can transform any Σ_1 -formula into a Π_1 one
- > we can apply a "weak quantifier elimination"

> no quantifier elimination in the strict sense

- > in general, we can transform any $\Sigma_1\text{--formula}$ into a Π_1 one
- > we can apply a "weak quantifier elimination"

> transform-1 is not really usable in practice!

- > transform-1 is not really usable in practice!
- > symbolic execution: sensitive to combinatorial explosion

- > transform-1 is not really usable in practice!
- > symbolic execution: sensitive to combinatorial explosion
- > three sources of such explosions:

- > transform-1 is not really usable in practice!
- > symbolic execution: sensitive to combinatorial explosion
- > three sources of such explosions:
 - > traces of execution

- > transform-1 is not really usable in prad
- > symbolic execution: sensitive to combin
- > three sources of such explosions:
 - > traces of execution
 - > recall the tree of traces

- > transform-1 is not really usable in prad
- > symbolic execution: sensitive to combin
- > three sources of such explosions:
 - > traces of execution
 - > recall the tree of traces
 - > mitigated by pruning unreachable traces

- > transform-1 is not really usable in practice!
- > symbolic execution: sensitive to combinatorial explosion
- > three sources of such explosions:
 - > traces of execution
 - > recall the tree of traces
 - > mitigated by pruning unreachable traces
 - > rules of \mathcal{R}_1

- > transform-1 is not really usable in practice!
- > symbolic execution: sensitive to combinatorial explosion
- > three sources of such explosions:
 - > traces of execution
 - > recall the tree of traces
 - > mitigated by pruning unreachable traces
 - > rules of \mathcal{R}_1

D-NFeat
$$\neg x[f]y \Rightarrow$$

- > transform-1 is not really usable in practice!
- > symbolic execution: sensitive to combinatorial explosion
- > three sources of such explosions:
 - > traces of execution
 - > recall the tree of traces
 - > mitigated by pruning unreachable traces
 - > rules of \mathcal{R}_1

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > transform-1 is not really usable in practice!
- > symbolic execution: sensitive to combinatorial explosion
- > three sources of such explosions:
 - > traces of execution
 - > recall the tree of traces
 - > mitigated by pruning unreachable traces
 - > rules of \mathcal{R}_1

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

> specifications

- > specifications
 - > recall the specification of "mkdir /usr/lib/foo" with three error cases

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

Problem 1: \mathcal{R}_1 introduces disjunctions and new variables.

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

> new system of rules \mathcal{R}_2

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat-Abs
$$\neg x[f]y \land x[f]\uparrow \Rightarrow x[f]\uparrow$$

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat-Abs
$$\neg x[f]y \wedge x[f]\uparrow \qquad \Rightarrow \qquad x[f]\uparrow \\ \text{D-NFeat-Feat} \qquad \neg x[f]y \wedge x[f]z \qquad \Rightarrow \qquad x[f]z \wedge y \neq_{\star} z$$

Problem 1: \mathcal{R}_1 introduces disjunctions and new variables.

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat-Abs
$$\neg x[f]y \wedge x[f]\uparrow \qquad \Rightarrow \qquad x[f]\uparrow \\ \text{D-NFeat-Feat} \qquad \neg x[f]y \wedge x[f]z \qquad \Rightarrow \qquad x[f]z \wedge y \neq_{\star} z$$

> \mathcal{R}_2 never introduces disjunctions or variables

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat-Abs
$$\neg x[f]y \land x[f]\uparrow \Rightarrow x[f]\uparrow$$

D-NFeat-Feat $\neg x[f]y \land x[f]z \Rightarrow x[f]z \land y \neq_{\star} z$

- > \mathcal{R}_2 never introduces disjunctions or variables
- > we loose the garbage collection of irreducible constraints

D-NFeat
$$\neg x[f]y \Rightarrow x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat-Abs
$$\neg x[f]y \land x[f]\uparrow \Rightarrow x[f]\uparrow$$

D-NFeat-Feat $\neg x[f]y \land x[f]z \Rightarrow x[f]z \land y \neq_{\star} z$

- > \mathcal{R}_2 never introduces disjunctions or variables
- > we loose the garbage collection of irreducible constraints
 - > and \mathcal{R}_2 is therefore useless to decide the first-order

$$\text{D-NFeat} \qquad \neg x[f]y \qquad \Rightarrow \qquad x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat-Abs
$$\neg x[f]y \land x[f]\uparrow \Rightarrow x[f]\uparrow$$

D-NFeat-Feat $\neg x[f]y \land x[f]z \Rightarrow x[f]z \land y \neq_{\star} z$

- > \mathcal{R}_2 never introduces disjunctions or variables
- > we loose the garbage collection of irreducible constraints
 - > and \mathcal{R}_2 is therefore useless to decide the first-order
 - > but we can recover garbage collection partially

$$\text{D-NFeat} \qquad \neg x[f]y \qquad \Rightarrow \qquad x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \neq_{\star} z)$$

- > new system of rules \mathcal{R}_2
- > holds on to such literals until we know which side to choose

D-NFeat-Abs
$$\neg x[f]y \land x[f]\uparrow \Rightarrow x[f]\uparrow$$

D-NFeat-Feat $\neg x[f]y \land x[f]z \Rightarrow x[f]z \land y \neq_{\star} z$

- > \mathcal{R}_2 never introduces disjunctions or variables
- > we loose the garbage collection of irreducible constraints
 - \rightarrow and \mathcal{R}_2 is therefore useless to decide the first-order
 - > but we can recover garbage collection partially
- > we can still prove satisfiability of irreducible constraints

Threaded Constraints

Problem 2: Constraints are not expressive enough for specifications.

$$t \quad = \quad c \wedge (\mathit{I}_1 \to \mathit{t}_1) \wedge \cdots \wedge (\mathit{I}_n \to \mathit{t}_n)$$
 Threaded Constraint

$$r[\mathtt{usr}]\uparrow$$

 $\lor \exists x \cdot (r[\mathtt{usr}]x \land x[\mathtt{lib}]\uparrow)$
 $\lor \exists x, y, z \cdot (r[\mathtt{usr}]x \land x[\mathtt{lib}]y \land y[\mathtt{foo}]z)$

$$\begin{array}{cccc} t & = & c \wedge (\mathit{I}_1 \to \mathit{t}_1) \wedge \cdots \wedge (\mathit{I}_n \to \mathit{t}_n) \\ & & & & \\ &$$

$$r[\mathtt{usr}]\uparrow$$

 $\forall \exists x \cdot (r[\mathtt{usr}]x \land x[\mathtt{lib}]\uparrow)$
 $\forall \exists x, y, z \cdot (r[\mathtt{usr}]x \land x[\mathtt{lib}]y \land y[\mathtt{foo}]z)$

Threaded Constraint
$$Constraint$$
 Constraint Literal Threaded Constraint $Constraint$ Threaded $Constraint$ Th

$$t= c \wedge (l_1
ightarrow t_1) \wedge \cdots \wedge (l_n
ightarrow t_n)$$
 if $c \models l_1$

Problem 2: Constraints are not expressive enough for specifications.

Run on toolchain:

- > on 113,328 scenarios
- > with a timeout of 60s

Problem 2: Constraints are not expressive enough for specifications.

Run on toolchain:

- > on 113,328 scenarios
- > with a timeout of 60s

	Without	With
Time	8h25	
Scenarios	45%	

Problem 2: Constraints are not expressive enough for specifications.

Run on toolchain:

- > on 113,328 scenarios
- > with a timeout of 60s

	Without	With
Time	8h25	0h22
Scenarios	45%	52%

http://the.report/rancid-cqi/

Report > rancid-cgi

Meta

Start time 2021-01-29 08:56:30 End time 2021-01-29 08:56:30 Duration

Parsing Status

Name rancid-cgi Version 3.10-1 Maintainer scripts

preinst

postinst

Rejected by conversion unsupported feature: special builtin: exec

http://the.report/rancid-cgi/

Report > rancid-cgi Meta Start time 2021-01-29 08:56:30 End time 2021-01-29 08:56:30 Duration Parsing Status Name rancid-cgi Version 3.10-1 Maintainer scripts preinst postinst Rejected by conversion unsupported feature: special builtin: exec

http://the.report/rancid-cgi/install/not-installed/1.html

Report > rancid-cgi > Installation > Not-Installed #1

log

[TRACE] test -h /etc/rancid/lg.conf: path resolves to file of type 'I

[TRACE] rm /etc/rancid/lg.conf: remove file

[TRACE] test -e /etc/rancid/apache.conf: path resolves

[TRACE] rm /etc/rancid/apache.conf: target does not exist or is a di

http://the.report/rancid-cgi/install/not-installed/1.html

Report > rancid-cgi > Installation > Not-Installed #1

log

[TRACE] test -h /etc/rancid/lg.conf: path resolves to file of type 'l [TRACE] rm /etc/rancid/lg.conf: remove file [TRACE] test -e /etc/rancid/apache.conf: path resolves [TRACE] rm /etc/rancid/apache.conf: target does not exist or is a di

Original Shell script

```
1 #! /hin/sh
2 # preinst script for rancid
3 #
4 # see: dh installdeb(1)
6 set -e
 # To remove old bad env link
9 if [ -h /etc/rancid/lg.conf ]; then
          rm /etc/rancid/lg.conf
11fi
12if [ -e /etc/rancid/apache.conf ]: then
13
         rm /etc/rancid/apache.conf
14fi
15
16
17# dh installdeb will replace this with shell code automatically
18# generated by other debhelper scripts.
19
20
21
22exit 0
```

Bugs Found

Bugs	Closed	Detected by	Examples
95	56	parser	not using -e mode
6	4	parser & manual	unsafe or non-POSIX constructs
34	24	corpus mining	wrong options, mixed redirections
9	7	conversion	wrong test expressions
5	2	symbolic execution	try to remove a directory with rm
3	3	formalisation	bug in dpkg-maintscript-helper
151	92		

> Theoretical results:

- > Theoretical results:
 - > FTS

- > Theoretical results:
 - > FTS
 - > Decision procedures

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order
- > Modelisation:

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order
- > Modelisation:
 - > POSIX Shell

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order
- > Modelisation:
 - > POSIX Shell
 - > Unix filesystems & utilities

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order
- > Modelisation:
 - > POSIX Shell
 - > Unix filesystems & utilities
- > Implementation:

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order
- > Modelisation:
 - > POSIX Shell
 - > Unix filesystems & utilities
- > Implementation:
 - > Parser & Conversion for POSIX Shell

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order
- > Modelisation:
 - > POSIX Shell
 - > Unix filesystems & utilities
- > Implementation:
 - > Parser & Conversion for POSIX Shell
 - > Efficient solver for FTS

- > Theoretical results:
 - > FTS
 - > Decision procedures
 - > Decidability of the first-order
- > Modelisation:
 - > POSIX Shell
 - > Unix filesystems & utilities
- > Implementation:
 - > Parser & Conversion for POSIX Shell
 - > Efficient solver for FTS
 - > Toolchain scaling to 30,000 packages

> Support for more maintainer scripts:

- > Support for more maintainer scripts:
 - > extend intermediary language

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c
 - > take its specification $\phi(r,r')$

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c
 - > take its specification $\phi(r,r')$
 - > take fs such that $[r \mapsto fs] \models \exists r' \cdot \phi(r, r')$

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c
 - > take its specification $\phi(r,r')$
 - > take fs such that $[r \mapsto fs] \models \exists r' \cdot \phi(r, r')$
 - > run c on fs, obtain fs'

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c
 - > take its specification $\phi(r,r')$
 - > take fs such that $[r \mapsto fs] \models \exists r' \cdot \phi(r, r')$
 - > run c on fs, obtain fs'
 - > check that $[r \mapsto \mathit{fs}, r' \mapsto \mathit{fs'}] \models \phi(r, r')$

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c
 - > take its specification $\phi(r,r')$
 - > take fs such that $[r \mapsto fs] \models \exists r' \cdot \phi(r, r')$
 - > run c on fs, obtain fs'
 - > check that $[r \mapsto \mathit{fs}, r' \mapsto \mathit{fs'}] \models \phi(r, r')$
- > Generalisation:

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c
 - > take its specification $\phi(r,r')$
 - > take fs such that $[r \mapsto fs] \models \exists r' \cdot \phi(r, r')$
 - > run c on fs, obtain fs'
 - > check that $[r \mapsto \mathit{fs}, r' \mapsto \mathit{fs'}] \models \phi(r, r')$
- > Generalisation:
 - > to other distributions

- > Support for more maintainer scripts:
 - > extend intermediary language
 - > write more specifications
- > Automated testing of specifications:
 - > take a utility call c
 - > take its specification $\phi(r,r')$
 - > take fs such that $[r \mapsto fs] \models \exists r' \cdot \phi(r, r')$
 - > run c on fs, obtain fs'
 - > check that $[r \mapsto \mathit{fs}, r' \mapsto \mathit{fs'}] \models \phi(r, r')$
- > Generalisation:
 - > to other distributions
 - > to Shell scripts in general

> Extension of FTS to support:

- > Extension of FTS to support:
 - > quantification over features;

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;
 - > inclusion of trees $(x \subseteq y)$.

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;
 - > inclusion of trees $(x \subseteq y)$.
- > A solver that supports globs:

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;
 - > inclusion of trees $(x \subseteq y)$.
- > A solver that supports globs:
 - > to specify commands like: rm *.foo

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;
 - > inclusion of trees $(x \subseteq y)$.
- > A solver that supports globs:
 - > to specify commands like: rm *.foo
 - > with: $\neg r[*.foo] \uparrow \land r'[*.foo] \uparrow \land r =_{\mathfrak{C}\{*.foo\}} r'$.

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;
 - > inclusion of trees $(x \subseteq y)$.
- > A solver that supports globs:
 - > to specify commands like: rm *.foo
 - > with: $\neg r[*.foo] \uparrow \land r'[*.foo] \uparrow \land r =_{\mathfrak{C}\{*.foo\}} r'$.
- > "Efficient" decision procedures for:

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;
 - > inclusion of trees $(x \subseteq y)$.
- > A solver that supports globs:
 - > to specify commands like: rm *.foo
 - > with: $\neg r[*.foo] \uparrow \land r'[*.foo] \uparrow \land r =_{\mathfrak{C}\{*.foo\}} r'$.
- > "Efficient" decision procedures for:
 - > first-order,

- > Extension of FTS to support:
 - > quantification over features;
 - > paths of features;
 - > inclusion of trees $(x \subseteq y)$.
- > A solver that supports globs:
 - > to specify commands like: rm *.foo
 - > with: $\neg r[*.foo] \uparrow \land r'[*.foo] \uparrow \land r =_{\mathfrak{C}\{*.foo\}} r'$.
- > "Efficient" decision procedures for:
 - > first-order,
 - > entailment of Σ_1 -formulas.

Thank You!

Contributions:

- > parser for POSIX Shell*
- > intermediary
 language*
- > feature trees
 logic FTS
- > decision
 procedures
- > decidability results
- > efficiency considerations
- > implementation