Deciding the First-Order Theory
of an Algebra of Feature Trees with Updates

Nicolas Jeannerod, Ralf Treinen
IRIF, Université Paris-Diderot

June 25, 2018

1/24

The CoLiS Project

> ANR project with IRIF, Inria Saclay, Inria Lille.

2/24

The CoLiS Project

> ANR project with IRIF, Inria Saclay, Inria Lille.

> Verifying Debian packages

2/24

The CoLiS Project

> ANR project with IRIF, Inria Saclay, Inria Lille.
> Verifying Debian packages:

> A tar archive containing files;
> A few shell scripts.

2/24

The CoLiS Project

> ANR project with IRIF, Inria Saclay, Inria Lille.
> Verifying Debian packages:

> A tar archive containing files;
> A few shell scripts.

> Giving them specifications

2/24

The CoLiS Project

> ANR project with IRIF, Inria Saclay, Inria Lille.

> Verifying Debian packages:
> A tar archive containing files;
> A few shell scripts.

> Giving them specifications:
> Input:

> Environment,
> Execution mode (install, update, removal, purge, ..),
> Input filesystem;

2/24

The CoLiS Project

> ANR project with IRIF, Inria Saclay, Inria Lille.

> Verifying Debian packages:
> A tar archive containing files;
> A few shell scripts.

> Giving them specifications:

> Input:
> Environment,
> Execution mode (install, update, removal, purge, ..),
> Input filesystem;

> Output:
> Success / Error,
> Output filesystem.

2/24

The CoLiS Project

> ANR project with IRIF, Inria Saclay, Inria Lille.

> Verifying Debian packages:
> A tar archive containing files;
> A few shell scripts.

> Giving them specifications:

> Input:
> Environment,
> Execution mode (install, update, removal, purge, ..),
> Input filesystem;

> Output:
> Success / Error,
> Output filesystem.

2/24

Big Picture

Shell

3/24

Big Picture

Translation

Shell —— IL

3/24

Big Picture

Shell — ===, D

3/24

Big Picture

Shell — ===, D

Specifications in
Tree Transducers

3/24

Big Picture

Shell — ===, D

Specifications in Specifications in
Feature Trees Tree Transducers

3/24

Big Picture

She | | Translation D

Specifications in Specifications in
Feature Trees Tree Transducers

3/24

What For?

> Find executions that lead to errors.
> Provide an understandable explanation of why.

4/24

What For?

> Find executions that lead to errors.
> Provide an understandable explanation of why.

> Check properties

4/24

What For?

> Find executions that lead to errors.
> Provide an understandable explanation of why.

> Check properties:

> Script doing nothing:
Vin, out - (spec,(in, out) < out = in)

4/24

What For?

> Find executions that lead to errors.
> Provide an understandable explanation of why.

> Check properties:
> Script doing nothing:
Vin, out - (spec,(in, out) < out = in)

> Equivalence of two scripts:
Vin, out - (specg(in,out) < spec,(in,out))

4/24

What For?

> Find executions that lead to errors.
> Provide an understandable explanation of why.

> Check properties:
> Script doing nothing:
Vin, out - (spec,(in, out) < out = in)

> Equivalence of two scripts:
Vin, out - (specg(in,out) < spec,(in,out))

> Script that don’t modify /home:
Vin, out - (spec,(in, out) — out[home] = in[home])

4/24

What For?

> Find executions that lead to errors.
> Provide an understandable explanation of why.

> Check properties:
> Script doing nothing:
Vin, out - (spec,(in, out) < out = in)

> Equivalence of two scripts:
Vin, out - (specg(in,out) < spec,(in,out))

> Script that don’t modify /home:
Vin, out - (spec,(in, out) — out[home] = in[home])

> Sequence of scripts that do nothing:
Vin, out - (3r - (spec,(in,r) A spec,(r,out)) <> out = in)

4/24

Feature Trees and Update

5/24

Unix Filesystem

us/ y‘:
lit/

> Basically a tree with labelled nodes and edges;

6/24

Unix Filesystem

us/ yc
lit/
1ibc.sc/ \1ibc.so.6

> Basically a tree with labelled nodes and edges;
> There can be sharing at the leafs (hard link between files);

6/24

Unix Filesystem

lit/
libc. sc/ \1ibc .s0.6
> Basically a tree with labelled nodes and edges;
> There can be sharing at the leafs (hard link between files);

> There can be pointers to other parts of the tree (symbolic links)

6/24

Unix Filesystem

lik/ 7 root\ !
1ibc.sc/ \1ibc.so.6

> Basically a tree with labelled nodes and edges;

> There can be sharing at the leafs (hard link between files);

> There can be pointers to other parts of the tree (symbolic links)
which may form cycles.

6/24

Here Come the Feature Trees

us/ \e\tc
/)
ocaml/

7/24

Here Come the Feature Trees

r
us/ \e\tc
/)
._ . J .
ocaml/

7/24

Here Come the Feature Trees

r
us/ \e\tc
v w
i/ e/

T

ocaml/ ule]

e(r) = Hu,v,x,w-{

7/24

Here Come the Feature Trees

r
us/ \e\tc
v w
i/ e/

T

ocaml/ ule]

rlusr]v A v[liblz

ofr) = Hu,v,x,w-{ Arletc]w A w[skel|u

7/24

Here Come the Feature Trees

r
us/ \e\tc
v w
i/ e/

T

ocaml/ ule]

rlusr]v A v[lib]z A z[ocaml] 1

elr) = Hu,v,x,w-{ Arletc]w A w[skel|u

7/24

Here Come the Feature Trees

r
us/ \e\tc
v w
i/ e/

T

ocaml/ ule]

rlusr]v A v[lib]z A z[ocaml] 1

c(r) = Ju,v,z,w - { A rletc]w A w[skel]u A u[2]

7/24

...and Here Come the Update

usr/ \etc
lib/
/maml

8/24

...and Here Come the Update

USI‘/ \etc

. mkdir /usr/lib/ocaml
llb/

/maml

8/24

...and Here Come the Update

usr/ \etc usr/ \etc

lib/ mkdir /usr/lib/ocaml lib/
/ocaml /ocaml
g

8/24

...and Here Come the Update

T r!
usr/ \etc usr/ \etc
lib/ mkdir /usr/lib/ocaml lib/
/ocaml /ocaml
(%)
dr,r’) =

8/24

...and Here Come the Update

r r
usr/ \etc usr/ \etc
v ’U/
mkdir /usr/lib/ocaml .
lib/ llb/
X ;13/

/cwa.ml /ocaml
y'[2]

/ / / / /
d(ryr') = ooz, 2y

8/24

...and Here Come the Update

r
usr/ \etc usr/ \etc
v v
lib/ mkdir /usr/lib/ocaml lib/
T 2
/cwa.ml /ocaml
y' (]

r’is r with usr — v’
Av'is v with 1ib — 2/
Az’ is x with ocaml — ¢/
Ay'[o]

/ / / / /
d(ryr') = ooz, 2y

8/24

Er.. Is That Really What We Want?

> Asymmetric:
yisz with f — v

9/24

Er.. Is That Really What We Want?

> Asymmetric:
yisz with f — v

> Makes it hard to eliminate variables:

3:1&(yis x with f — v >

A zis xz with g = w

9/24

Er.. Is That Really What We Want?

> Asymmetric:
yisz with f — v

> Makes it hard to eliminate variables:

3:1&(yis x with f — v >

A zis xz with g = w

> Contains in fact two pieces of information:

9/24

Er.. Is That Really What We Want?

> Asymmetric:
yisz with f — v

> Makes it hard to eliminate variables:

3:1&(yis x with f — v >

A zis xz with g = w

> Contains in fact two pieces of information:
> “y and x may be different in f but are identical everywhere else”

9/24

Er.. Is That Really What We Want?

> Asymmetric:
yisz with f — v

> Makes it hard to eliminate variables:
= yis z with f — v
A zis xz with g = w
> Contains in fact two pieces of information:

> “y and x may be different in f but are identical everywhere else”

> “y points to v through f”

9/24

Er.. Is That Really What We Want?

> Asymmetric:
yisz with f — v

> Makes it hard to eliminate variables:
= yis z with f — v
A zis xz with g = w
> Contains in fact two pieces of information:

> “y and x may be different in f but are identical everywhere else”

> “y points to v through f:

9/24

Er.. Is That Really What We Want?

> Asymmetric:
yisz with f — v

> Makes it hard to eliminate variables:

3:1&(yis x with f — v >

A zis xz with g = w
> Contains in fact two pieces of information:
> “y and x may be different in f but are identical everywhere else”:
Yy~yfpx
> “y points to v through f:
ylflv

9/24

Nah. This Tildy-Thingy Looks Much Better

> Allows to express the update:

“yisxwith f = v” = y~paxAy[flv

10/24

Nah. This Tildy-Thingy Looks Much Better

> Allows to express the update:

“yisxwith f = v” = y~paxAy[flv

> Equivalence relation:

Yy~ < Ty
Y~ TN~z = Yo~z

10/24

Nah. This Tildy-Thingy Looks Much Better

> Allows to express the update:

“yisxwith f = v” = y~paxAy[flv

> Equivalence relation:

Yo~pxr = Ty
Y~ TN~z = Yo~z

> Other properties:

Y~fpTNANT g2 — Y ~{fgt ?
Y~fFTNANY ~vg < Yr~gT

10/24

Nah. This Tildy-Thingy Looks Much Better

> Allows to express the update:

“yisxwith f = v” = y~paxAy[flv

> Equivalence relation:

Yo~pxr = Ty
Y~ TN~z = Yo~z

> Other properties:

Y~fpTNANT g2 — Y ~{fgt ?
Y~fFTNANY ~vg < Yr~gT

> Allows to remove variables:

EL’E'(yis x with f — v)

A zis z with g = w

10/24

Nah. This Tildy-Thingy Looks Much Better

> Allows to express the update:

“yisxwith f = v” = y~paxAy[flv

> Equivalence relation:

Yo~pxr = Ty
Y~ TN~z = Yo~z

> Other properties:

Y~fpTNANT g2 — Y ~{fgt ?
Y~fFTNANY ~vg < Yr~gT

> Allows to remove variables:

3$'< y~rzAy[flv >

Nz e~g A z[glw

10/24

Nah. This Tildy-Thingy Looks Much Better

> Allows to express the update:

“yisxwith f = v” = y~paxAy[flv

> Equivalence relation:

Yo~pxr = Ty
Y~ TN~z = Yo~z

> Other properties:

Y~fpTNANT g2 — Y ~{fgt ?
Y~fFTNANY ~vg < Yr~gT

> Allows to remove variables:

y ~pz Aylfl
Az - < /\zr\{gx/\z[g]w > “ ylflv A z[glw

10/24

Nah. This Tildy-Thingy Looks Much Better

> Allows to express the update:

“yisxwith f = v” = y~paxAy[flv

> Equivalence relation:

Yo~pxr = Ty
Y~ TN~z = Yo~z

> Other properties:

Y~fpTNANT g2 — Y ~{fgt ?
Y~fFTNANY ~vg < Yr~gT

> Allows to remove variables:

. (Y rE Ayl
Nz e~g A z[glw

) & ylflo A zlglw Ay~ 2

10/24

Model and Examples

FT =F~FT

> JF infinite set of features (names for the edges);
> F ~» F7T: partial function with finite domain;

11/24

Model and Examples

FT =F~FT

> JF infinite set of features (names for the edges);
> F ~» F7T: partial function with finite domain;

N N
HAN

11/24

Constraints and their Interpretation

Equality
Feature
Absence
Fence

Similarity

> x, y variables.
> f € F, F C Ffinite.

8
=
<

2
.
_>

=,

r~fpY

12/24

Constraints and their Interpretation

Equalty FT7,p E z=y
Feature FT7,p [E z[fly
Absence FT,p E= z[f]T
Fence FT,p E z[F]
Similarity F7T,p = xz~pvy

> x, y variables.
> f € F, F C Ffinite.
> p a valuation from variables to F7T.

iff
iff
iff
iff

12/24

Constraints and their Interpretation

Equalty FT7,p E z=y iff p(z)=p(y)
Feature FT7,p E z[fly iff
Absence FT,p | x[f]tT iff
Fence FT,p E z[F] iff
Similarity FT,p E z~py Iff

> x, y variables.
> f € F, F C Ffinite.
> p a valuation from variables to F7T.

12/24

Constraints and their Interpretation

Equalty FT7,p E z=y iff p(z)=p(y)
Feawre FT,p = alfly it p(x)(f) =py)
Absence FT,p | x[f]tT iff

Fence FT,p E z[F] iff

Similarity FT,p E z~py Iff

> x, y variables.
> f € F, F C Ffinite.
> p a valuation from variables to F7T.

12/24

Constraints and their Interpretation

Equalty FT7,p E z=y iff p(z)=p(y)
Feawre FT,p = alfly it p(x)(f) =py)
Absence FT,p E z[f]t iff f¢dom(p(x))
Fence FT,p E z[F] iff

Similarity FT,p E z~py Iff

> x, y variables.
> f € F, F C Ffinite.
> p a valuation from variables to F7T.

12/24

Constraints and their Interpretation

Equalty FT7,p E z=y iff p(z)=p(y)
Feawre FT,p = alfly it p(x)(f) =py)
Absence FT,p E z[f]t iff f¢dom(p(x))
Fence FT,p E =z[F] iff dom(p(z)) C F
Similarity FT,p E z~py Iff

> x, y variables.
> f € F, F C Ffinite.
> p a valuation from variables to F7T.

12/24

Constraints and their Interpretation

Equalty FT7,p E z=y iff p(z)=p(y)

Feawre FT,p = alfly it p(x)(f) =py)
Absence FT,p E z[f]t iff f¢dom(p(x))

Fence FT,p E =z[F] iff dom(p(z)) C F
Similarity F7,p E z~py iff plx) | F = py) | F

> x, y variables.
> f € F, F C Ffinite.
> p a valuation from variables to F7T.

12/24

Examples (Again)

N N
FAN

The following constraints are satisfied in 7, [x — t1,y — to, 2z — t3]:

Z[f]xv QT[’L} 1, J"[{fhgv h, Z}]) T~ Y, T~hiy Y

13/24

Existential Fragment

14/24

Existential Fragment

> Constraint system for symbolic execution.

15/24

Existential Fragment

> Constraint system for symbolic execution.

> Existential quantification on the outside.

15/24

Existential Fragment

> Constraint system for symbolic execution.
> Existential quantification on the outside.

> “Saturation” system:

15/24

Existential Fragment

> Constraint system for symbolic execution.
> Existential quantification on the outside.

> “Saturation” system:
> that terminates,

15/24

Existential Fragment

> Constraint system for symbolic execution.
> Existential quantification on the outside.
> “Saturation” system:

> that terminates,
> that keeps equivalences,

15/24

Existential Fragment

> Constraint system for symbolic execution.
> Existential quantification on the outside.
> “Saturation” system:

> that terminates,

> that keeps equivalences,
> with nice properties on the normal form.

15/24

Existential Fragment

> Constraint system for symbolic execution.
> Existential quantification on the outside.
> “Saturation” system:

> that terminates,

> that keeps equivalences,
> with nice properties on the normal form.

> Normal form: incremental.

15/24

v

Existential Fragment

Constraint system for symbolic execution.
Existential quantification on the outside.
“Saturation” system:

> that terminates,

> that keeps equivalences,
> with nice properties on the normal form.

Normal form: incremental.

The rules come from properties of the constructions.

15/24

Rules with the Feature Constraint

Clash Rules

C-FEAT-ABS :z:[f}y A f[f])

C-FEAT-FEN x[fly N\ z[F] (f¢F)

16/24

Rules with the Feature Constraint

Clash Rules

C-FEAT-ABS z[fly A z[f] T
C-FEAT-FEN x[fly N\ z[F] (f¢F)
Simplification Rules

3X, 2 - (x[fly A x[flz Ac)
= 3X - (z[fly A ez = y})

S-FEATS

16/24

Rules with the Similarity Constraint

Propagation Rules

x~pyAz[flzAec

= ~py Aalfle Aylf)zAc (F¢F)

P-FEAT

17/24

Rules with the Similarity Constraint

Propagation Rules

x~pyAz[flzAec
PorEAT =z ~pryAz[flzNy[flzAc (f¢F)
x~pyAz[G]Ac

Poren =z ~pyANz[GIANYy[FUG]Ac

17/24

Rules with the Similarity Constraint

Propagation Rules

x~pyAz[flzAec

P-FeAT =z ~pyAz[flzANy[flzAc

(f ¢ F)

z~pyANz[G]Ac
P-FEN
=z ~pyANz[GIANYy[FUG]Ac
T~ YNT ~gzNc

> T~ YNT ~g 2Ny ~Fug 2NC

P-Sim

17/24

Properties of the Normal Forms

Lemma

Take aclausec (# L) [...]
c=gAN3dX -1

> in normal form;

18/24

Properties of the Normal Forms

Lemma

Take aclausec (# L) [...]
c=gAN3dX -1

> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

18/24

Properties of the Normal Forms

Lemma
Take aclausec (# L) [...]
c=gAN3dX -1
> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

Then 3
FTEVY-ceg

18/24

Properties of the Normal Forms

Lemma
Take aclausec (# L) [...]
c=gAN3dX -1
> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

Then 5
FTEVY-ceg

> Corollary: all normal forms (£ 1) are satisfiable:
> If ¢is a clause in normal form: F7T =3 - ¢

18/24

Properties of the Normal Forms

Lemma
Take aclausec (# L) [...]
c=gAN3dX -1
> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

Then 5
FTEVY-ceg

> Corollary: all normal forms (£ 1) are satisfiable:
> If ¢is a clause in normal form: F7T =3 - ¢

> We can “garbage collect” the normal forms to make them smaller.

18/24

To

usr

1lib ‘
Yo

Garbage Collection

19/24

Garbage Collection

To

usr

1lib ‘
Yo

> mkdir /usr/lib/ocaml;

19/24

Garbage Collection

T0 ~{usr} 1
usr usr
xo ~{1ib} 1
1lib ‘ ‘ 1lib
Yo ™~ {ocaml} Y1
m/ ocaml/
z1[2]

> mkdir /usr/lib/ocaml; o
> Normal form: satisfiable

19/24

Garbage Collection

T0 ~{usr} 1
usr usr
xo ~{1ib} 1
1lib ‘ ‘ 1lib
Yo ™~ {ocaml} Y1
m/ ocaml/
z1[2]

> mkdir /usr/lib/ocaml; o
> Normal form: satisfiable
> mkdir /usr/lib/haskell;

19/24

Garbage Collection

To ~{usr}
usr

xo ~{1ib}
1ib ‘

Yo ~{ocanl}

ocaml/

> mkdir /usr/lib/ocaml;

> mkdir /usr/lib/haskell;

1 ~{usr}
usr
T ~{1ib}
‘ 1lib
Y1 ~{haskell}

°Cam1/ haskell
z1(2]

T2

usr
T2

‘ lib
Y2
\haskell
wo D]

19/24

Garbage Collection

ro ~{usr} T ~{usr}
usr usr
zo ~{1ib} T ~{1ib}
1ib ‘ ‘ 1ib
{ocaml} ~{haskell}

ocaml/ \haskell ocaml/ \haskell ocaml/ \haskell
2

> mkdir /usr/lib/ocaml;

> mkdir /usr/lib/haskell;

T2

usr
T2

‘1ib

2]

19/24

ro

usr

1ib ‘

Garbage Collection

~{usr} r ~{usr}
.............. usT
~Y{1ib} x1 ~{1ib}
[}'li’b »
~{ocaml} {haskell}

ocaml/ \haskell ocaml/ \haskell ocaml/ \haskell
2

> mkdir /usr/lib/ocaml;

Ty

usr

I

‘1ib

2]

> Normal form: satisfiable

> mkdir /usr/lib/haskell;

19/24

Garbage Collection

To - SR ~{usr} 71 ~{usr} BINSE r9

usT| et usr N usr
T S {1ab) x1 OYfLib} o Ty
1ib‘ I }-1i’b ----- S ‘1ib
o ™~ {ocaml} {haskell}
ocaml/ \haskell ocaml/ \haskell ocaml/ \haskell
2 (]

> mkdir /usr/lib/ocaml; o
> Normal form: satisfiable
> mkdir /usr/lib/haskell;

19/24

Garbage Collection

To ~{usr}
usr

xo ~{1ib}
1ib ‘

™{ocaml;haskell}

Yo
ocaml/ \haskell

> mkdir /usr/lib/ocaml;

2

usr
T2

‘1ib

Y2
ocaml/ \haskell

Z1[Q§] 1UQ[Q§]

> Normal form: satisfiable

> mkdir /usr/lib/haskell;

19/24

First Order

20/24

Quantifier Switching

> What can we express with local variables?

Az - (ylfle A zlg] 1)

21/24

Quantifier Switching

> What can we express with local variables?

Az - (ylfle A zlg] 1)

> Usually: add predicates to the language that cover these cases
> Here: predicates about paths (hard to work with).

21/24

Quantifier Switching

> What can we express with local variables?

Jz - (y[f]z A zlg] 1)
> Usually: add predicates to the language that cover these cases
> Here: predicates about paths (hard to work with).
> The feature constraint is a function:

X,z - (y[flz Ac) y¢ X
= ylf] T AVz - (y[fle — 3X - (y[flz ne) y#z

FEAT-FUN

21/24

Quantifier Switching

> What can we express with local variables?

Jz - (y[f]z A zlg] 1)
> Usually: add predicates to the language that cover these cases
> Here: predicates about paths (hard to work with).
> The feature constraint is a function:

X,z - (y[flz Ac) y¢ X
= ylf] T AVz - (y[fle — 3X - (y[flz ne) y#z

FEAT-FUN

> In the example:

—ylf1 T AV - (y[fle = xlg] 1)

21/24

How Does That Help?

33X,z - (y[flz Ae) y¢ X
= ylf] T AVz - (y[fle — 3X - (y[flzne) y#z

FEAT-FUN

22/24

How Does That Help?

X,z - (y[flx ANe)
= —y[f] T AVz - (y[flz = 3X - (y[flz Ac))

FEAT-FUN

Lemma (reminder)

Take a clause c (¢ 1) [...]
c=gN3X-I
> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

Then .
FTEY-ceg

22/24

How Does That Help?

X,z - (y[flx ANe)
= —y[f] T AVz - (y[flz = 3X - (y[flz Ac))

FEAT-FUN

Lemma (reminder)

Take a clause c (¢ 1) [...]
c=gN3X-I
> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

Then ~
FTEV-ce&g

> Feat-Fun puts us in the hypothesis of the lemma.

22/24

How Does That Help?

X,z - (y[flx ANe)
= —y[f] T AVz - (y[flz = 3X - (y[flz Ac))

FEAT-FUN

Lemma (reminder)

Take a clause c (¢ 1) [...]
c=gN3X-I
> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

Then ~
FTEV-ce&g

> Fear-Fun puts us in the hypothesis of the lemma.
> Switch an existential quantification into an universal one.

22/24

How Does That Help?

X,z - (y[flx ANe)
= —y[f] T AVz - (y[flz = 3X - (y[flz Ac))

FEAT-FUN

Lemma (reminder)

Take a clause c (¢ 1) [...]
c=gAN3dX-I

> in normal form;

> such that there is no y[flxz withx € X andy ¢ X.

Then }
FTEV-ce&g

> Fear-Fun puts us in the hypothesis of the lemma.
> Switch an existential quantification into an universal one.
> We can go for a weak quantifier elimination.

22/24

Weak Quantifier Elimination

> If we have a procedure:

IX - c= VY -

23/24

Weak Quantifier Elimination

> If we have a procedure:
X - c= VY.

> Then:
vX:-3Xo---VX,1-3X,, - C

23/24

Weak Quantifier Elimination

> If we have a procedure:
X - c=>VY -
> Then:

VXp-3Xs - VX, -3X, - c
= VXp-3Xo- VX, - VY, -

23/24

Weak Quantifier Elimination

> If we have a procedure:

IX - c= VY -

> Then:
vX:-3Xo---VX,1-3X,, - C
= VX -3Xy VX, VY, ¢
= vX;-3Xy - VX, 1Y, -

23/24

> If we have a procedure:

> Then:

Weak Quantifier Elimination

4y

IX - c= VY -

VX
VX,
VX1
3X1

C3X, -
X, -
S3AXy -
VXy -

VX1 -3X5 - c
VX1 VY, -
. VXn_lyn . C/

. Eanflyn . ﬁC,

23/24

> If we have a procedure:

> Then:

Weak Quantifier Elimination

4y

Y

IX - c= VY -

VX
VX,
VX1
3X

y; - ¢

C3X, -
X, -
S3AXy -
VXy -

/!

VX1 -3X5 - c
VX1 VY, -
. VXn_lyn . C/

. Eanflyn . —|C,

23/24

Weak Quantifier Elimination

> If we have a procedure:

IX - c= VY -

> Then:

vX:-3Xs -
= VXp-dXs -
— VX, -3X,--
= - dX; VX

= 7 3Iy;-

VX1 -3X5 - c
VX1 VY, -
. VXn_lyn . C/

. Eanflyn . —|C,

> We can remove all quantifier blocks but one.
> If we know how to handle the last block, it's won.

> in our case, we do for closed formula.

23/24

v Vv Vv VvV V

v

Conclusion

CoLiS project: verifying Debian packages and their shell scripts.
Feature trees with update to model modifications of filesystems.
Incremental procedure to decide satisfiability of an existential fragment.

Extends to first order via weak quantifier elimination.

Article:

[4 Nicolas Jeannerod, Ralf Treinen. Deciding the First-Order Theory of
an Algebra of Feature Trees with Updates. |IJCAR 2018

Thank you for your attention! Any questions?

24/24

	Feature Trees and Update
	Existential Fragment
	First Order
	Appendix

