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What For?

> Find executions that lead to errors.
> Provide an understandable explanation of why.

> Check properties:
> Script doing nothing:
Vin, out - (spec,(in, out) < out = in)

> Equivalence of two scripts:
Vin, out - (specg(in,out) < spec,(in,out))

> Script that don’t modify /home:
Vin, out - (spec,(in, out) — out[home] = in[home])

> Sequence of scripts that do nothing:
Vin, out - (3r - (spec,(in,r) A spec,(r,out)) <> out = in)
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Unix Filesystem

lik/ 7 root\ !
1ibc.sc/ \1ibc.so.6

> Basically a tree with labelled nodes and edges;

> There can be sharing at the leafs (hard link between files);

> There can be pointers to other parts of the tree (symbolic links)
which may form cycles.
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...and Here Come the Update

r
usr/ \etc usr/ \etc
v v
lib/ mkdir /usr/lib/ocaml lib/
T 2
/cwa.ml /ocaml
y' (]

r’is r with usr — v’
Av'is v with 1ib — 2/
Az’ is x with ocaml — ¢/
Ay'[o]

/ / / / /
d(ryr') = ooz, 2y
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> Makes it hard to eliminate variables:

3:1&( yis x with f — v >

A zis xz with g = w
> Contains in fact two pieces of information:
> “y and x may be different in f but are identical everywhere else”:
Yy~yfpx
> “y points to v through f:
ylflv
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Constraints and their Interpretation

Equality
Feature
Absence
Fence

Similarity

> x, y variables.
> f € F, F C Ffinite.

8
=
<

2
.
_>

=,

r~fpY
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Absence FT,p E z[f]t iff f¢dom(p(x))

Fence FT,p E =z[F] iff dom(p(z)) C F
Similarity F7,p E z~py iff plx) | F = py) | F

> x, y variables.
> f € F, F C Ffinite.
> p a valuation from variables to F7T.
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Examples (Again)

N N
FAN

The following constraints are satisfied in 7, [x — t1,y — to, 2z — t3]:

Z[f]xv QT[’L} 1, J"[{fhgv h, Z}]) T~ Y, T~hiy Y
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v

Existential Fragment

Constraint system for symbolic execution.
Existential quantification on the outside.
“Saturation” system:

> that terminates,

> that keeps equivalences,
> with nice properties on the normal form.

Normal form: incremental.

The rules come from properties of the constructions.
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Clash Rules

C-FEAT-ABS z[fly A z[f] T
C-FEAT-FEN x[fly N\ z[F] (f¢F)
Simplification Rules

3X, 2 - (x[fly A x[flz Ac)
= 3X - (z[fly A ez = y})

S-FEATS
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Rules with the Similarity Constraint
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Rules with the Similarity Constraint

Propagation Rules

x~pyAz[flzAec

P-FeAT =z ~pyAz[flzANy[flzAc

(f ¢ F)

z~pyANz[G]Ac
P-FEN
=z ~pyANz[GIANYy[FUG]Ac
T~ YNT ~gzNc

> T~ YNT ~g 2Ny ~Fug 2NC

P-Sim
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Properties of the Normal Forms

Lemma
Take aclausec (# L) [...]
c=gAN3dX -1
> in normal form;
> such that there is no y[f]z withz € X andy ¢ X.

Then 5
FTEVY-ceg

> Corollary: all normal forms (£ 1) are satisfiable:
> If ¢is a clause in normal form: F7T =3 - ¢

> We can “garbage collect” the normal forms to make them smaller.

18/24



To

usr

1lib ‘
Yo

Garbage Collection

19/24



Garbage Collection

To

usr

1lib ‘
Yo

> mkdir /usr/lib/ocaml;

19/24



Garbage Collection

T0 ~{usr} 1
usr usr
xo ~{1ib} 1
1lib ‘ ‘ 1lib
Yo ™~ {ocaml} Y1
m/ ocaml/
z1[2]

> mkdir /usr/lib/ocaml; o
> Normal form: satisfiable

19/24



Garbage Collection

T0 ~{usr} 1
usr usr
xo ~{1ib} 1
1lib ‘ ‘ 1lib
Yo ™~ {ocaml} Y1
m/ ocaml/
z1[2]

> mkdir /usr/lib/ocaml; o
> Normal form: satisfiable
> mkdir /usr/lib/haskell;

19/24



Garbage Collection

To ~{usr}
usr

xo ~{1ib}
1ib ‘

Yo ~{ocanl}

ocaml/

> mkdir /usr/lib/ocaml;

> mkdir /usr/lib/haskell;

1 ~{usr}
usr
T ~{1ib}
‘ 1lib
Y1 ~{haskell}

°Cam1/ haskell
z1(2]

T2

usr
T2

‘ lib
Y2
\haskell
wo D]
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Garbage Collection

ro ~{usr} T ~{usr}
usr usr
zo ~{1ib} T ~{1ib}
1ib ‘ ‘ 1ib
{ocaml} ~{haskell}

ocaml/ \haskell ocaml/ \haskell ocaml/ \haskell
2

> mkdir /usr/lib/ocaml;

> mkdir /usr/lib/haskell;

T2

usr
T2

‘1ib

2]
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ro

usr

1ib ‘

Garbage Collection

~{usr} r ~{usr}
.............. usT
~Y{1ib} x1 ~{1ib}
[ }'li’b ..... »
~{ocaml} {haskell}

ocaml/ \haskell ocaml/ \haskell ocaml/ \haskell
2

> mkdir /usr/lib/ocaml;

Ty

usr

I

‘1ib

2]

> Normal form: satisfiable

> mkdir /usr/lib/haskell;

19/24



Garbage Collection
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Garbage Collection

To ~{usr}
usr

xo ~{1ib}
1ib ‘

™{ocaml;haskell}

Yo
ocaml/ \haskell

> mkdir /usr/lib/ocaml;

2

usr
T2

‘1ib

Y2
ocaml/ \haskell

Z1[Q§] 1UQ[Q§]

> Normal form: satisfiable

> mkdir /usr/lib/haskell;

19/24



First Order

20/24



Quantifier Switching

> What can we express with local variables?

Az - (ylfle A zlg] 1)

21/24



Quantifier Switching

> What can we express with local variables?

Az - (ylfle A zlg] 1)

> Usually: add predicates to the language that cover these cases
> Here: predicates about paths (hard to work with).

21/24



Quantifier Switching

> What can we express with local variables?

Jz - (y[f]z A zlg] 1)
> Usually: add predicates to the language that cover these cases
> Here: predicates about paths (hard to work with).
> The feature constraint is a function:

X,z - (y[flz Ac) y¢ X
= ylf] T AVz - (y[fle — 3X - (y[flz ne) y#z

FEAT-FUN

21/24



Quantifier Switching

> What can we express with local variables?

Jz - (y[f]z A zlg] 1)
> Usually: add predicates to the language that cover these cases
> Here: predicates about paths (hard to work with).
> The feature constraint is a function:

X,z - (y[flz Ac) y¢ X
= ylf] T AVz - (y[fle — 3X - (y[flz ne) y#z

FEAT-FUN

> In the example:

—ylf1 T AV - (y[fle = xlg] 1)
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X,z - (y[flx ANe)
= —y[f] T AVz - (y[flz = 3X - (y[flz Ac))

FEAT-FUN

Lemma (reminder)

Take a clause c (¢ 1) [...]
c=gAN3dX-I

> in normal form;

> such that there is no y[flxz withx € X andy ¢ X.

Then }
FTEV-ce&g

> Fear-Fun puts us in the hypothesis of the lemma.
> Switch an existential quantification into an universal one.
> We can go for a weak quantifier elimination.
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Weak Quantifier Elimination

> If we have a procedure:

IX - c= VY -

> Then:
vX:-3Xo---VX,1-3X,, - C
= VX -3Xy VX, VY, ¢
= vX;-3Xy - VX, 1Y, -
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> If we have a procedure:

> Then:

Weak Quantifier Elimination

4y

IX - c= VY -

VX
VX,
VX1
3X1

C3X, -
X, -
S3AXy -
VXy -

VX1 -3X5 - c
VX1 VY, -
. VXn_lyn . C/

. Eanflyn . ﬁC,
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> If we have a procedure:

> Then:

Weak Quantifier Elimination

4y

Y

IX - c= VY -

VX
VX,
VX1
3X

y; - ¢

C3X, -
X, -
S3AXy -
VXy -

/!

VX1 -3X5 - c
VX1 VY, -
. VXn_lyn . C/

. Eanflyn . —|C,
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Weak Quantifier Elimination

> If we have a procedure:

IX - c= VY -

> Then:

vX:-3Xs -
= VXp-dXs -
— VX, -3X,--
= - dX; VX

= 7 3Iy;-

VX1 -3X5 - c
VX1 VY, -
. VXn_lyn . C/

. Eanflyn . —|C,

> We can remove all quantifier blocks but one.
> If we know how to handle the last block, it's won.

> in our case, we do for closed formula.
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Conclusion

CoLiS project: verifying Debian packages and their shell scripts.
Feature trees with update to model modifications of filesystems.
Incremental procedure to decide satisfiability of an existential fragment.

Extends to first order via weak quantifier elimination.

Article:

[4 Nicolas Jeannerod, Ralf Treinen. Deciding the First-Order Theory of
an Algebra of Feature Trees with Updates. |IJCAR 2018

Thank you for your attention! Any questions?
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