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Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.
> “Lead to errors”"? Where the script exists abnormally.

Fill automated report to script’'s maintainer.

Check properties:
> 7in, Tout * (specsl(rin,rout) > specs2(r0ut,rm))
> Vrin, Tout - (Specy(Tin, Tout) — Tout[home] = 7, [home])
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ftree = F ~ ftree

» F infinite set of features (names for the edges);
> F ~~ ftree: partial function with finite domain;
» Infinite set of variables z, y, etc.;

> f e F, F CF finite.

Equality =1y
Feature z[fly z[f] 1 Absence
Fence z[F) TRy Similarity

» Composed with =, A, V, 3z, Vz (no quantification on features);
Wanted: (un)satisfiability of these constraints;
» Bonus point for incremental procedures.

v
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Semantics

» 7 the model of all feature trees:

> p: V()= T,

Equality:
Feature:
Absence:

Fence:

T.p
T,p
T.p
T,p

momomm

T.pEc

=

=

—

<

oo A
—

p(x) = p(y)
p(x)(f) = p(y)

J ¢ dom(p(x))
don(p(x)) C F
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Semantics

T.pEc

» 7 the model of all feature trees:
> p: V()= T,

Equality:  T,p E az=y if p(z)=py)

Featwre:  Top = alfly  if p@)(f) = p(y)
Absence:  T,p E z[f]T if f ¢ dom(p(x))

Fence: T,p E z[F] if dom(p(x)) CF
Similarity: T,p E z+py if px) | F = ply) | F
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» Rewriting system;
» Puts constraints in normal form (not necessarily unique);
> Respects equivalences;

> Normal forms: either L or with nice properties.
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zifilza Ao A x| fu]x (n>1)
e[ fly Nxlf] 1

z[fly A x[F] (f¢F)
Clash Patterns

IX,z-(x=yANc) = IX-cfxz—y} (x #y)

X,z (@[flynalflane) = 3X - ([flyne{z = y}) (y # 2)
rT~pYNT ~gyNc = T~pngy/Nce
Simplification Rules

x~pyAz[flene = xzrpynz[flzAy[flezAe (f¢F)
zpyAzfltAe = z~pyAs[fITAylflTAc (fEF)
zopyANz[GlAe = x~pyAz[GIAyYy[FUG]Ac
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> V(g) N X =g,
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z[F] = "z has no feature outside F"
T %y = “there is a feature outside G that differentiates x and y"

» either it is in F', and we can list all the cases;
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Does that even terminate?

Fy1- © R-NSIM-FENCE (for F = {f} and G = ©):
£
zo[{f}] % s[{fHANztzyAc |
0 ‘ - 32,2 alf)s Aylf1# Az s o Al{f
f f
z1[{f}] 7o Y1 » R-NSmM-Fence with xg and yo;
f ‘ » S-Feats with 1 and z;
z2[{f}] > R-NSm-Fence with 7 and yg;
f|
f|
zn[{f}]
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Does that even terminate?

Y1, Y2, 22 : R-NSIM-FENCE (for F = {f} and G = 2):
£
zo[{f}] % s[{fHANztzyAc |
0 S 3,2 alflz AYlSIE A5 o 2 AlLF
£ £ ‘
z1[{f}] 1 > R-NSm-Fence with zg and yo;
f ‘ f ‘ » S-Feats with 1 and z;
332[{f}] Z2 by Y2 > R-NSm-Fence with 7 and yg;
£
£
zn[{f}]

22/27



Does that even terminate?

Y1, Y2, 22 : R-NSIM-FENCE (for F = {f} and G = 2):
£
0 = 3 alfls A A 2 o 2 AlLS
£ £ ‘
z1[{f}] 1 > R-NSm-Fence with zg and yo;
f ‘ f ‘ » S-Feats with 1 and z;
xo[{f}] 22 Ay Y2 P> R-NSm-FeNnce with 21 and y3;
f ‘ » S-Feats with 29 and 2o
f|
zn[{f}]
f|

22/27



Does that even terminate?

Jy1, yo-

zo[{f}]

w2[{f}] *o

R-NSIM-FENCE (for F' = {f} and G = @):

» S-Fears with 21 and z;

f

el A oy ne |
= 3 alfls A A 2 o 2 AlLS

t]

n > R-NSm-Fence with xg and yg;

Y2 > R-NSm-Fence with 7 and yg;

> S-Frats with x9 and z9
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Does that even terminate?

Jy1, yo-

zo[{f}]

w2[{f}] *o

R-NSIM-FENCE (for F' = {f} and G = @):

S-FeaTts with 1 and z;

f

Aoy |
= 32,2 - 2[fla Aylfld Nz dte 2 Nal{f

t]

U1 R-NSm-FENCE with g and yo;

>
>
Y2 > R-NSm-Fence with 7 and yg;
> S-Frats with x9 and z9
>
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Does that even terminate?

Hyhy% s

zo[{f}]

s Yn:

*o

R-NSIM-FENCE (for F' = {f} and G = @):

f

Sl A oy ne |
S 32 alfls A A 2 o 2 AlLS

t|

n R-NSm-FENCE with g and yo;

f ‘ S-FeaTts with 1 and z;

[}

>
>
2 > R-NSm-Fence with 7 and yg;
> S-Frats with x9 and z9
>
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Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc:

» Universal, switch it to existential:

vV3i...VX.c = -3V.--3X- -—c

» Existential:
» If there is an other bloc before, use the given technique:

VI VY - 3X e = VI VYV X'/
> If not, then it is only a satisfiability question.
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Let ¢ be a clause c = g. A 3X - 1. such that:
> ..

» there is no y[f]z withz € X andy ¢ X.

Then c is equivalent to g..

Lukily:

3X,z-(ylflene) = —wlf] T AVz- (y[fle — 3IX -¢)
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