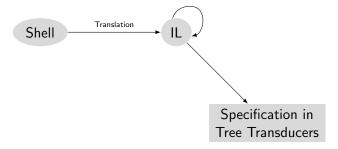
Feature constraints to modelise Unix filesystems

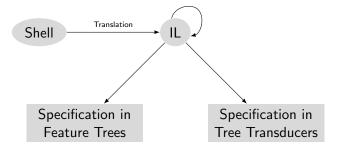
Nicolas Jeannerod

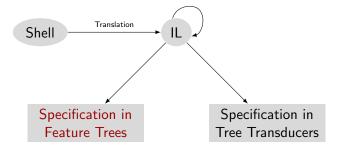
IRIF

February 7, 2018

Shell







Find accessible states that lead to errors.

Find accessible states that lead to errors.

► "Accessible"? Where the specification is satisfiable.

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- ▶ "Lead to errors"? Where the script exists abnormally.

Find accessible states that lead to errors.

- ► "Accessible"? Where the specification is satisfiable.
- ▶ "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.

Find accessible states that lead to errors.

- ► "Accessible"? Where the specification is satisfiable.
- ▶ "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.

Check properties

Find accessible states that lead to errors.

- ► "Accessible"? Where the specification is satisfiable.
- ▶ "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.

Check properties:

 $\blacktriangleright \ \forall r_{in}, r_{out} \cdot \left(\mathtt{spec}_{s_1}(r_{in}, r_{out}) \ \leftrightarrow \ \mathtt{spec}_{s_2}(r_{out}, r_{in}) \right)$

Find accessible states that lead to errors.

- ► "Accessible"? Where the specification is satisfiable.
- ▶ "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.

Check properties:

- $\blacktriangleright \ \forall r_{in}, r_{out} \cdot \left(\mathtt{spec}_{s_1}(r_{in}, r_{out}) \ \leftrightarrow \ \mathtt{spec}_{s_2}(r_{out}, r_{in}) \right)$
- $\blacktriangleright \ \forall r_{in}, r_{out} \cdot (\mathtt{spec}_s(r_{in}, r_{out}) \ \rightarrow \ r_{out}[\mathtt{home}] = r_{in}[\mathtt{home}])$

Find accessible states that lead to errors.

- ► "Accessible"? Where the specification is satisfiable.
- ▶ "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.

Check properties:

- $\blacktriangleright \ \forall r_{in}, r_{out} \cdot \left(\mathtt{spec}_{s_1}(r_{in}, r_{out}) \ \leftrightarrow \ \mathtt{spec}_{s_2}(r_{out}, r_{in}) \right)$
- $\blacktriangleright \ \forall r_{in}, r_{out} \cdot (\mathtt{spec}_s(r_{in}, r_{out}) \ \rightarrow \ r_{out}[\mathtt{home}] = r_{in}[\mathtt{home}])$
- $ightharpoonup \forall r_{in}, r_{out} \cdot (\operatorname{spec}_s(r_{in}, r_{out}) \leftrightarrow r_{out} \doteq r_{in})$

Find accessible states that lead to errors.

- ► "Accessible"? Where the specification is satisfiable.
- ▶ "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.

Check properties:

- $\blacktriangleright \ \forall r_{in}, r_{out} \cdot \left(\mathtt{spec}_{s_1}(r_{in}, r_{out}) \ \leftrightarrow \ \mathtt{spec}_{s_2}(r_{out}, r_{in}) \right)$
- $\blacktriangleright \ \forall r_{in}, r_{out} \cdot (\mathtt{spec}_s(r_{in}, r_{out}) \ \rightarrow \ r_{out}[\mathtt{home}] = r_{in}[\mathtt{home}])$
- $ightharpoonup \forall r_{in}, r_{out} \cdot (\operatorname{spec}_s(r_{in}, r_{out}) \leftrightarrow r_{out} \doteq r_{in})$
- $\blacktriangleright \ \forall r_{in}, r_{out} \cdot \left(\exists r' \cdot (\mathtt{spec}_{s_1}(r_{in}, r') \land \mathtt{spec}_{s_2}(r', r_{out})) \ \leftrightarrow \ r_{out} \doteq r_{in} \right)$

Table of Contents

Description of filesystems Unix filesystems

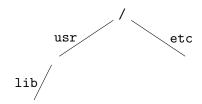
Static description Directory update

2. Constraints

Definitions
Basic constraints
Negation

3. Usages

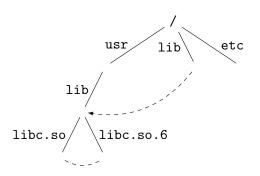
Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept



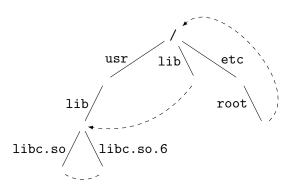
► Basically a tree with labelled nodes and edges;



- Basically a tree with labelled nodes and edges;
- ▶ There can be sharing at the leafs (hard link between files);



- ▶ Basically a tree with labelled nodes and edges;
- ▶ There can be sharing at the leafs (hard link between files);
- ► There can be pointers to other parts of the tree (symbolic links)



- Basically a tree with labelled nodes and edges;
- There can be sharing at the leafs (hard link between files);
- ► There can be pointers to other parts of the tree (symbolic links) which may form cycles.

Table of Contents

1. Description of filesystems

Unix filesystems

Static description

Directory update

2. Constraints

Definitions

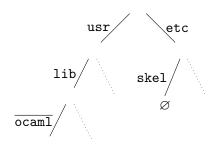
Basic constraints

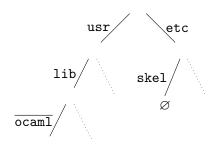
Negation

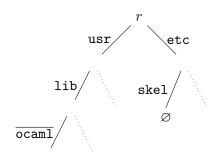
3. Usages

Decidability of the First-Order Theory

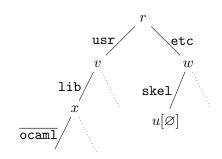
Automated Specification for Scripts: Proof of Concept



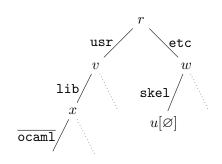




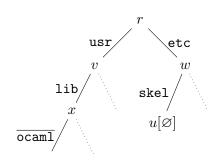
c =



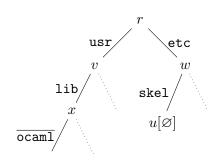
$$c = \exists u, v, x, w \cdot \left\{ \right.$$



$$c \ = \ \exists u, v, x, w \cdot \left\{ \begin{array}{l} r[\mathtt{usr}]v \wedge v[\mathtt{lib}]x \\ \wedge r[\mathtt{etc}]w \wedge w[\mathtt{skel}]u \end{array} \right.$$



$$c \ = \ \exists u, v, x, w \cdot \left\{ \begin{array}{l} r[\mathtt{usr}]v \wedge v[\mathtt{lib}]x \wedge x[\mathtt{ocaml}] \uparrow \\ \wedge r[\mathtt{etc}]w \wedge w[\mathtt{skel}]u \end{array} \right.$$



$$c \ = \ \exists u,v,x,w \cdot \left\{ \begin{array}{l} r[\mathtt{usr}]v \wedge v[\mathtt{lib}]x \wedge x[\mathtt{ocaml}] \uparrow \\ \wedge r[\mathtt{etc}]w \wedge w[\mathtt{skel}]u \wedge u[\varnothing] \end{array} \right.$$

Table of Contents

1. Description of filesystems

Unix filesystems
Static description

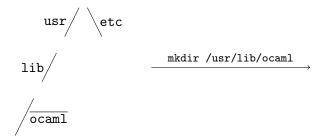
Directory update

2. Constraints Definitions Basic constraints Negation

3. Usages

Decidability of the First-Order Theory Automated Specification for Scripts: Proof of Concept

```
usr/\etc
```



$$c' = \exists v, v', x, x', y' \cdot \left\{ \right.$$



$$c' \ = \ \exists v, v', x, x', y' \cdot \left\{ \begin{array}{l} r' \text{ is } r \text{ with usr} \to v' \\ \wedge \ v' \text{ is } v \text{ with lib} \to x' \\ \wedge \ x' \text{ is } x \text{ with ocaml} \to y' \\ \wedge \ y'[\varnothing] \end{array} \right.$$

► Asymmetric:

 $y \text{ is } x \text{ with } f \to v$

► Asymmetric:

$$y \text{ is } x \text{ with } f \to v$$

► Makes it hard to eliminate variables:

$$\exists x \cdot \left(\begin{array}{c} y \text{ is } x \text{ with } f \to v \\ \land z \text{ is } x \text{ with } g \to w \end{array} \right)$$

► Asymmetric:

$$y$$
 is x with $f \to v$

► Makes it hard to eliminate variables:

$$\exists x \cdot \left(\begin{array}{c} y \text{ is } x \text{ with } f \to v \\ \land z \text{ is } x \text{ with } g \to w \end{array} \right)$$

Contains in fact two pieces of information:

► Asymmetric:

$$y$$
 is x with $f \rightarrow v$

► Makes it hard to eliminate variables:

$$\exists x \cdot \left(\begin{array}{c} y \text{ is } x \text{ with } f \to v \\ \land z \text{ is } x \text{ with } g \to w \end{array} \right)$$

- Contains in fact two pieces of information:
 - lacktriangle "y and x may be different in f but are identical everywhere else"

► Asymmetric:

$$y$$
 is x with $f \to v$

► Makes it hard to eliminate variables:

$$\exists x \cdot \left(\begin{array}{c} y \text{ is } x \text{ with } f \to v \\ \land z \text{ is } x \text{ with } g \to w \end{array} \right)$$

- ► Contains in fact two pieces of information:
 - lacktriangle "y and x may be different in f but are identical everywhere else"

• "y points to v through f"

► Asymmetric:

$$y \text{ is } x \text{ with } f \to v$$

► Makes it hard to eliminate variables:

$$\exists x \cdot \left(\begin{array}{c} y \text{ is } x \text{ with } f \to v \\ \land z \text{ is } x \text{ with } g \to w \end{array} \right)$$

- ► Contains in fact two pieces of information:
 - $lackbox{ "y and x may be different in f but are identical everywhere else"}$

• "y points to v through f":

► Asymmetric:

$$y \text{ is } x \text{ with } f \to v$$

► Makes it hard to eliminate variables:

$$\exists x \cdot \left(\begin{array}{c} y \text{ is } x \text{ with } f \to v \\ \land z \text{ is } x \text{ with } g \to w \end{array} \right)$$

- ► Contains in fact two pieces of information:
 - ightharpoonup "y and x may be different in f but are identical everywhere else":

$$y \stackrel{.}{\sim}_f x$$

• "y points to v through f":

► Allows to express the update:

 $\text{``}y \text{ is } x \text{ with } f \to v\text{''} \quad := \quad y \stackrel{.}{\sim}_f x \wedge y[f]v$

► Allows to express the update:

"
$$y \text{ is } x \text{ with } f \to v$$
" $:= y \stackrel{.}{\sim}_f x \wedge y[f]v$

► Symmetric and transitive:

$$\begin{array}{cccc} y \stackrel{.}{\sim}_f x & \Longleftrightarrow & x \stackrel{.}{\sim}_f y \\ y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_f x & \Longrightarrow & y \stackrel{.}{\sim}_f z \end{array}$$

► Allows to express the update:

$$\text{``}y \text{ is } x \text{ with } f \to v\text{''} \quad := \quad y \stackrel{.}{\sim}_f x \wedge y[f]v$$

► Symmetric and transitive:

$$\begin{array}{cccc} y \stackrel{\smile}{\sim}_f x & \Longleftrightarrow & x \stackrel{\smile}{\sim}_f y \\ y \stackrel{\smile}{\sim}_f x \wedge z \stackrel{\smile}{\sim}_f x & \Longrightarrow & y \stackrel{\smile}{\sim}_f z \end{array}$$

▶ Other properties:

$$\begin{array}{cccc} y \mathrel{\dot{\sim}_f} x \land z \mathrel{\dot{\sim}_g} x & \Longrightarrow & y \mathrel{\dot{\sim}_{\{f,g\}}} z \\ y \mathrel{\dot{\sim}_f} x \land y \mathrel{\dot{\sim}_g} x & \Longleftrightarrow & y \mathrel{\dot{\sim}_\varnothing} x \end{array}$$

► Allows to express the update:

$$\text{``}y \text{ is } x \text{ with } f \to v\text{''} \quad := \quad y \stackrel{.}{\sim}_f x \wedge y[f]v$$

► Symmetric and transitive:

$$\begin{array}{ccc} y \stackrel{.}{\sim}_f x & \Longleftrightarrow & x \stackrel{.}{\sim}_f y \\ y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_f x & \Longrightarrow & y \stackrel{.}{\sim}_f z \end{array}$$

▶ Other properties:

$$\begin{array}{cccc} y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_g x & \Longrightarrow & y \stackrel{.}{\sim}_{\{f,g\}} z \\ y \stackrel{.}{\sim}_f x \wedge y \stackrel{.}{\sim}_g x & \Longleftrightarrow & y \stackrel{.}{\sim}_\varnothing x \end{array}$$

$$\exists x \cdot \left(\begin{array}{c} y \text{ is } x \text{ with } f \to v \\ \wedge z \text{ is } x \text{ with } g \to w \end{array} \right)$$

► Allows to express the update:

$$\text{``}y \text{ is } x \text{ with } f \to v\text{''} \quad := \quad y \stackrel{.}{\sim}_f x \wedge y[f]v$$

► Symmetric and transitive:

$$\begin{array}{ccc} y \stackrel{.}{\sim}_f x & \Longleftrightarrow & x \stackrel{.}{\sim}_f y \\ y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_f x & \Longrightarrow & y \stackrel{.}{\sim}_f z \end{array}$$

► Other properties:

$$\begin{array}{cccc} y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_g x & \Longrightarrow & y \stackrel{.}{\sim}_{\{f,g\}} z \\ y \stackrel{.}{\sim}_f x \wedge y \stackrel{.}{\sim}_g x & \Longleftrightarrow & y \stackrel{.}{\sim}_\varnothing x \end{array}$$

$$\exists x \cdot \left(\begin{array}{c} y \stackrel{\sim}{\sim}_f x \wedge y[f]v \\ \wedge z \stackrel{\sim}{\sim}_g x \wedge z[g]w \end{array} \right)$$

► Allows to express the update:

$$\text{``}y \text{ is } x \text{ with } f \to v\text{''} \quad := \quad y \stackrel{.}{\sim}_f x \wedge y[f]v$$

► Symmetric and transitive:

$$\begin{array}{ccc} y \stackrel{.}{\sim}_f x & \Longleftrightarrow & x \stackrel{.}{\sim}_f y \\ y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_f x & \Longrightarrow & y \stackrel{.}{\sim}_f z \end{array}$$

► Other properties:

$$\begin{array}{cccc} y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_g x & \Longrightarrow & y \stackrel{.}{\sim}_{\{f,g\}} z \\ y \stackrel{.}{\sim}_f x \wedge y \stackrel{.}{\sim}_g x & \Longleftrightarrow & y \stackrel{.}{\sim}_\varnothing x \end{array}$$

$$\exists x \cdot \left(\begin{array}{c} y \stackrel{\sim}{\sim}_f x \wedge y[f]v \\ \wedge z \stackrel{\sim}{\sim}_g x \wedge z[g]w \end{array} \right) \leftrightarrow y[f]v \wedge z[g]w$$

► Allows to express the update:

$$\text{``}y \text{ is } x \text{ with } f \to v\text{''} \quad := \quad y \stackrel{.}{\sim}_f x \wedge y[f]v$$

► Symmetric and transitive:

▶ Other properties:

$$\begin{array}{ccc} y \stackrel{.}{\sim}_f x \wedge z \stackrel{.}{\sim}_g x & \Longrightarrow & y \stackrel{.}{\sim}_{\{f,g\}} z \\ y \stackrel{.}{\sim}_f x \wedge y \stackrel{.}{\sim}_q x & \Longleftrightarrow & y \stackrel{.}{\sim}_{\varnothing} x \end{array}$$

$$\exists x \cdot \left(\begin{array}{c} y \stackrel{\checkmark}{\sim}_f x \wedge y[f]v \\ \wedge z \stackrel{\checkmark}{\sim}_g x \wedge z[g]w \end{array}\right) \leftrightarrow y[f]v \wedge z[g]w \wedge y \stackrel{\checkmark}{\sim}_{\{f,g\}} z$$

Table of Contents

Description of filesystems
 Unix filesystems
 Static description
 Directory update

2. Constraints

Definitions

Basic constraints
Vegation

3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

 $\mathtt{ftree} \quad ::= \quad \mathcal{F} \leadsto \mathtt{ftree}$

```
\mathtt{ftree} \quad ::= \quad \mathcal{F} \leadsto \mathtt{ftree}
```

- $ightharpoonup \mathcal{F}$ infinite set of features (names for the edges);
- $\blacktriangleright \ \mathcal{F} \leadsto \mathtt{ftree} \colon \mathsf{partial} \ \mathsf{function} \ \mathsf{with} \ \mathsf{finite} \ \mathsf{domain};$

$$\mathtt{ftree} \quad ::= \quad \mathcal{F} \leadsto \mathtt{ftree}$$

- F infinite set of features (names for the edges);
- $ightharpoonup \mathcal{F} \leadsto \mathtt{ftree}$: partial function with finite domain;
- ▶ Infinite set of variables x, y, etc.;
- ▶ $f \in \mathcal{F}$, $F \subset \mathcal{F}$ finite.

Equality
$$x \doteq y$$
 Feature $x[f]y$ $x[f] \uparrow$ Absence Fence $x[F]$ $x \sim_F y$ Similarity

$$\mathtt{ftree} \quad ::= \quad \mathcal{F} \leadsto \mathtt{ftree}$$

- \triangleright \mathcal{F} infinite set of features (names for the edges);
- $ightharpoonup \mathcal{F} \leadsto \mathtt{ftree}$: partial function with finite domain;
- ▶ Infinite set of variables x, y, etc.;
- ▶ $f \in \mathcal{F}$, $F \subset \mathcal{F}$ finite.

Equality
$$x \doteq y$$
 Feature $x[f]y$ $x[f]\uparrow$ Absence Fence $x[F]$ $x \sim_F y$ Similarity

▶ Composed with \neg , \land , \lor , $\exists x$, $\forall x$ (no quantification on features);

$$\mathtt{ftree} \quad ::= \quad \mathcal{F} \leadsto \mathtt{ftree}$$

- \triangleright \mathcal{F} infinite set of features (names for the edges);
- ▶ F → ftree: partial function with finite domain;
- ▶ Infinite set of variables x, y, etc.;
- ▶ $f \in \mathcal{F}$, $F \subset \mathcal{F}$ finite.

Equality
$$x \doteq y$$
 Feature $x[f]y$ $x[f] \uparrow$ Absence Fence $x[F]$ $x \sim_F y$ Similarity

- ▶ Composed with \neg , \land , \lor , $\exists x$, $\forall x$ (no quantification on features);
- ► Wanted: (un)satisfiability of these constraints;
 - Bonus point for incremental procedures.

$$\mathcal{T}, \rho \models c$$

- $ightharpoonup \mathcal{T}$ the model of all feature trees;
- $ightharpoonup
 ho: \mathcal{V}(c)
 ightarrow \mathcal{T};$

$$\mathcal{T}, \rho \models c$$

- $ightharpoonup \mathcal{T}$ the model of all feature trees;
- $ightharpoonup
 ho: \mathcal{V}(c)
 ightarrow \mathcal{T};$

Equality:
$$\mathcal{T}, \rho \models x \doteq y \quad \text{ if } \quad \rho(x) = \rho(y)$$

$$\mathcal{T}, \rho \models c$$

- $ightharpoonup \mathcal{T}$ the model of all feature trees;
- $ho: \mathcal{V}(c) \to \mathcal{T};$

Equality:
$$\mathcal{T}, \rho \models x \doteq y \quad \text{if} \quad \rho(x) = \rho(y)$$

Feature:
$$\mathcal{T}, \rho \models x[f]y$$
 if $\rho(x)(f) = \rho(y)$

Absence:
$$\mathcal{T}, \rho \models x[f] \uparrow \text{ if } f \notin \text{dom}(\rho(x))$$

$$\mathcal{T}, \rho \models c$$

- $ightharpoonup \mathcal{T}$ the model of all feature trees;
- $ho: \mathcal{V}(c) \to \mathcal{T};$

Equality:
$$\mathcal{T}, \rho \models x \doteq y$$
 if $\rho(x) = \rho(y)$
Feature: $\mathcal{T}, \rho \models x[f]y$ if $\rho(x)(f) = \rho(y)$
Absence: $\mathcal{T}, \rho \models x[f] \uparrow$ if $f \notin \text{dom}(\rho(x))$
Fence: $\mathcal{T}, \rho \models x[F]$ if $\text{dom}(\rho(x)) \subseteq F$

$$\mathcal{T}, \rho \models c$$

- \triangleright \mathcal{T} the model of all feature trees;
- $ho: \mathcal{V}(c) \to \mathcal{T};$

Equality:
$$\mathcal{T}, \rho \models x \doteq y \quad \text{if} \quad \rho(x) = \rho(y)$$

Feature: $\mathcal{T}, \rho \models x[f]y \quad \text{if} \quad \rho(x)(f) = \rho(y)$
Absence: $\mathcal{T}, \rho \models x[f] \uparrow \quad \text{if} \quad f \notin \text{dom}(\rho(x))$
Fence: $\mathcal{T}, \rho \models x[F] \quad \text{if} \quad \text{dom}(\rho(x)) \subseteq F$
Similarity: $\mathcal{T}, \rho \models x \stackrel{.}{\sim}_F y \quad \text{if} \quad \rho(x) \upharpoonright \overline{F} = \rho(y) \upharpoonright \overline{F}$

Table of Contents

Description of filesystems
 Unix filesystems
 Static description
 Directory update

2. Constraints

Definitions

Basic constraints

Negation

3. Usages

Decidability of the First-Order Theory Automated Specification for Scripts: Proof of Concept

Rewriting system;

- ► Rewriting system;
- ▶ Puts constraints in normal form (not necessarily unique);

- ► Rewriting system;
- ▶ Puts constraints in normal form (not necessarily unique);
- ► Respects equivalences;

- Rewriting system;
- ▶ Puts constraints in normal form (not necessarily unique);
- ► Respects equivalences;
- ▶ Normal forms: either \bot or with nice properties.

Basic rewriting system

```
x_1[f_1]x_2 \wedge \ldots \wedge x_n[f_n]x_1 \qquad (n \ge 1)

x[f]y \wedge x[f] \uparrow

x[f]y \wedge x[F] \qquad (f \notin F)

Clash Patterns
```

Basic rewriting system

$$x_1[f_1]x_2 \wedge \ldots \wedge x_n[f_n]x_1 \qquad (n \ge 1)$$

 $x[f]y \wedge x[f] \uparrow$
 $x[f]y \wedge x[F] \qquad (f \notin F)$

Clash Patterns

$$\exists X, x \cdot (x \doteq y \land c) \Rightarrow \exists X \cdot c\{x \mapsto y\} \qquad (x \neq y)$$

$$\exists X, z \cdot (x[f]y \land x[f]z \land c) \Rightarrow \exists X \cdot (x[f]y \land c\{z \mapsto y\}) \qquad (y \neq z)$$

$$x \stackrel{\sim}{\sim}_F y \land x \stackrel{\sim}{\sim}_G y \land c \Rightarrow x \stackrel{\sim}{\sim}_{F \cap G} y \land c$$

Simplification Rules

Basic rewriting system

$$x_1[f_1]x_2 \wedge \ldots \wedge x_n[f_n]x_1 \qquad (n \ge 1)$$
 $x[f]y \wedge x[f] \uparrow$
 $x[f]y \wedge x[F] \qquad (f \notin F)$
Clash Patterns

$$\exists X, x \cdot (x \doteq y \land c) \quad \Rightarrow \quad \exists X \cdot c \{x \mapsto y\}$$

$$\exists X, z \cdot (x[f]y \land x[f]z \land c) \quad \Rightarrow \quad \exists X \cdot (x[f]y \land c \{z \mapsto y\})$$

$$(x \neq y)$$

$$(y \neq z)$$

$$x \stackrel{\sim}{\sim}_{F} y \land x \stackrel{\sim}{\sim}_{G} y \land c \quad \Rightarrow \quad x \stackrel{\sim}{\sim}_{F \cap G} y \land c$$

Simplification Rules

$$\begin{array}{cccccccc} x \stackrel{.}{\sim}_F y \wedge x[f]z \wedge c & \Rightarrow & x \stackrel{.}{\sim}_F y \wedge x[f]z \wedge y[f]z \wedge c & (f \notin F) \\ x \stackrel{.}{\sim}_F y \wedge x[f] \uparrow \wedge c & \Rightarrow & x \stackrel{.}{\sim}_F y \wedge x[f] \uparrow \wedge y[f] \uparrow \wedge c & (f \notin F) \\ x \stackrel{.}{\sim}_F y \wedge x[G] \wedge c & \Rightarrow & x \stackrel{.}{\sim}_F y \wedge x[G] \wedge y[F \cup G] \wedge c \\ x \stackrel{.}{\sim}_F y \wedge x \stackrel{.}{\sim}_G z \wedge c & \Rightarrow & x \stackrel{.}{\sim}_F y \wedge x \stackrel{.}{\sim}_G z \wedge y \stackrel{.}{\sim}_{F \cup G} z \wedge c \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Propagation Rules

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

c is in normal form;

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- ightharpoonup c is in normal form;
- $\triangleright \mathcal{V}(g_c) \cap X = \varnothing;$
- \blacktriangleright every literal in l_c is about X;

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- ightharpoonup c is in normal form;
- $\triangleright \mathcal{V}(g_c) \cap X = \varnothing;$
- \blacktriangleright every literal in l_c is about X;
- ▶ there is no y[f]x with $x \in X$ and $y \notin X$.

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- ightharpoonup c is in normal form;
- $\triangleright \mathcal{V}(g_c) \cap X = \varnothing;$
- \blacktriangleright every literal in l_c is about X;
- ▶ there is no y[f]x with $x \in X$ and $y \notin X$.

Then c is equivalent to g_c .

Table of Contents

Description of filesystems
 Unix filesystems
 Static description
 Directory update

2. Constraints

Definitions
Basic constraints
Negation

3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

aka La Slide de la Mort

$$\neg x[f]y \wedge c \quad \Rightarrow \quad (x[f] \uparrow \lor \exists z \cdot (x[f]z \land y \not\sim_{\varnothing} z)) \land c$$

$$\neg x[f] \uparrow \land c \quad \Rightarrow \quad \exists z \cdot x[f]z \land c$$
Simple Replacement Rules

$$x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \setminus G \rangle \wedge c$$

$$x[F] \wedge x \not\sim_G y \wedge c \Rightarrow x[F] \wedge (\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y) \wedge c$$

$$x \stackrel{\cdot}{\sim}_F y \wedge x \not\sim_G y \wedge c \Rightarrow x \stackrel{\cdot}{\sim}_F y \wedge x \not\neq_{F \setminus G} y \wedge c$$
More Proposition Theorem

$$\begin{array}{ccc} x[F] \wedge \neg x[G] \wedge c & \Rightarrow & x[F] \wedge x \langle F \setminus G \rangle \wedge c \\ x[F] \wedge x \not\sim_G y \wedge c & \Rightarrow & x[F] \wedge \left(\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y \right) \wedge c \\ x \stackrel{.}{\sim}_F y \wedge x \not\sim_G y \wedge c & \Rightarrow & x \stackrel{.}{\sim}_F y \wedge x \not\neq_{F \setminus G} y \wedge c \\ & \qquad \qquad \text{More Replacement Rules} \end{array}$$

$$\begin{array}{cccc} x[F] \wedge \neg x[G] \wedge c & \Rightarrow & x[F] \wedge x \langle F \setminus G \rangle \wedge c \\ x[F] \wedge x \not\sim_G y \wedge c & \Rightarrow & x[F] \wedge \left(\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y \right) \wedge c \\ x \stackrel{.}{\sim}_F y \wedge x \not\sim_G y \wedge c & \Rightarrow & x \stackrel{.}{\sim}_F y \wedge x \not\neq_{F \setminus G} y \wedge c \\ & \qquad \qquad \text{More Replacement Rules} \end{array}$$

$$x\langle F \rangle := \bigvee_{f \in F} \exists z \cdot x[f]z$$

$$x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \setminus G \rangle \wedge c$$

$$x[F] \wedge x \not\sim_G y \wedge c \Rightarrow x[F] \wedge (\neg y[F \cup G] \vee x \not\succ_{F \setminus G} y) \wedge c$$

$$x \stackrel{\sim}{\sim}_F y \wedge x \not\sim_G y \wedge c \Rightarrow x \stackrel{\sim}{\sim}_F y \wedge x \not\succ_{F \setminus G} y \wedge c$$

$$x \neq_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not\sim_{\varnothing} z') \end{array} \right)$$

$$x[F] \wedge \neg x[G] \wedge c \quad \Rightarrow \quad x[F] \wedge x \langle F \setminus G \rangle \wedge c$$

$$x[F] \wedge x \not\sim_G y \wedge c \quad \Rightarrow \quad x[F] \wedge \left(\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y\right) \wedge c$$

$$x \stackrel{\cdot}{\sim}_F y \wedge x \not\sim_G y \wedge c \quad \Rightarrow \quad x \stackrel{\cdot}{\sim}_F y \wedge x \not\neq_{F \setminus G} y \wedge c$$

$$x \neq_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not\sim_{\varnothing} z') \end{array} \right)$$

$$\begin{array}{ccc} x[F] \wedge \neg x[G] \wedge c & \Rightarrow & x[F] \wedge x \langle F \setminus G \rangle \wedge c \\ x[F] \wedge x \not\sim_G y \wedge c & \Rightarrow & x[F] \wedge \left(\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y \right) \wedge c \\ x \stackrel{.}{\sim}_F y \wedge x \not\sim_G y \wedge c & \Rightarrow & x \stackrel{.}{\sim}_F y \wedge x \not\neq_{F \setminus G} y \wedge c \end{array}$$

More Replacement Rules

Enlargement and Propagation Rules

$$x \neq_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not\sim_{\varnothing} z') \end{array} \right)$$

$$x \neq_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not\sim_{\varnothing} z') \end{array} \right)$$

$$x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \setminus G \rangle \wedge c$$

$$x[F] \wedge x \not\sim_G y \wedge c \Rightarrow x[F] \wedge (\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y) \wedge c$$

$$x \stackrel{\cdot}{\sim}_F y \wedge x \not\sim_G y \wedge c \Rightarrow x \stackrel{\cdot}{\sim}_F y \wedge x \not\neq_{F \setminus G} y \wedge c$$

$$x \stackrel{\bullet}{\sim}_F y \wedge x \not\sim_G y \wedge c \Rightarrow x \stackrel{\bullet}{\sim}_F y \wedge x \not\neq_{F \setminus G} y \wedge c$$

$$x \not =_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not \sim_{\varnothing} z') \end{array} \right)$$

$$\begin{array}{rcl} x[F] \wedge \neg x[G] \wedge c & \Rightarrow & x[F] \wedge x \langle F \setminus G \rangle \wedge c \\ x[F] \wedge x \not\sim_G y \wedge c & \Rightarrow & x[F] \wedge \left(\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y \right) \wedge c \\ x \sim_F y \wedge x \not\sim_G y \wedge c & \Rightarrow & x \sim_F y \wedge x \not\neq_{F \setminus G} y \wedge c \end{array}$$

$$x[F]=$$
 " x has no feature outside F " $x\not\sim_G y=$ "there is a feature outside G that differentiates x and y "

$$x \not =_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not \sim_{\varnothing} z') \end{array} \right)$$

$$\begin{array}{ccc} x[F] \wedge \neg x[G] \wedge c & \Rightarrow & x[F] \wedge x \langle F \setminus G \rangle \wedge c \\ x[F] \wedge x \not\sim_G y \wedge c & \Rightarrow & x[F] \wedge \left(\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y \right) \wedge c \\ x \sim_F y \wedge x \not\sim_G y \wedge c & \Rightarrow & x \sim_F y \wedge x \not\neq_{F \setminus G} y \wedge c \end{array}$$

More Replacement Rules

x[F]= "x has no feature outside F " $x\not\sim_G y=$ "there is a feature outside G that differentiates x and y "

- ightharpoonup either it is in F,
- or it is not,

$$x \not =_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not \sim_{\varnothing} z') \end{array} \right)$$

$$x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x \langle F \setminus G \rangle \wedge c$$

$$x[F] \wedge x \not\sim_G y \wedge c \Rightarrow x[F] \wedge (\neg y[F \cup G] \vee x \not\simeq_{F \setminus G} y) \wedge c$$

$$x \stackrel{\sim}{\sim}_F y \wedge x \not\sim_G y \wedge c \Rightarrow x \stackrel{\sim}{\sim}_F y \wedge x \not\simeq_{F \setminus G} y \wedge c$$

$$x[F]=$$
 " x has no feature outside F " $x\not\sim_G y=$ "there is a feature outside G that differentiates x and y "

- \triangleright either it is in F, and we can list all the cases;
- or it is not,

$$x \not =_F y := \bigvee_{f \in F} \left(\begin{array}{c} \exists z' \cdot (x[f] \uparrow \land y[f]z') \lor \exists z \cdot (x[f]z \land y[f] \uparrow) \\ \lor \exists z, z' \cdot (x[f]z \land y[f]z' \land z \not \sim_{\varnothing} z') \end{array} \right)$$

$$\begin{array}{ccc} x[F] \wedge \neg x[G] \wedge c & \Rightarrow & x[F] \wedge x \langle F \setminus G \rangle \wedge c \\ x[F] \wedge x \not\sim_G y \wedge c & \Rightarrow & x[F] \wedge \left(\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y \right) \wedge c \\ x \sim_F y \wedge x \not\sim_G y \wedge c & \Rightarrow & x \sim_F y \wedge x \not\neq_{F \setminus G} y \wedge c \end{array}$$

$$x[F]=$$
 " x has no feature outside F " $x\not\sim_G y=$ "there is a feature outside G that differentiates x and y "

- ightharpoonup either it is in F, and we can list all the cases;
- ightharpoonup or it is not, and since x[F] then $\neg y[F \cup G]$.

Lemma

The constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

The constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- c is in normal form;
- $\triangleright \mathcal{V}(g_c) \cap X = \varnothing;$
- \blacktriangleright every literal in l_c is about X;
- ▶ there is no y[f]x with $x \in X$ and $y \notin X$.

Then c is equivalent to g_c .

R-NSIM-FENCE:

$$x[F] \wedge x \not\sim_G y \wedge c$$

$$\Rightarrow x[F] \wedge (\neg y[F \cup G] \vee x \not\neq_{F \setminus G} y) \wedge c$$

R-NSIM-FENCE (for $F = \{f\}$ and $G = \emptyset$):

$$x[\{f\}] \land x \not\sim_{\varnothing} y \land c$$

$$\Rightarrow x[\{f\}] \land (\neg y[\{f\}] \lor x \not\neq_f y) \land c$$

R-NSIM-FENCE (for $F = \{f\}$ and $G = \emptyset$):

$$x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c$$

$$\Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f\}]$$

 $x_n[\{f\}]$

$$\vdots \qquad \text{R-NSIM-FENCE (for } F = \{f\} \text{ and } G = \varnothing):$$

$$\begin{array}{ccc} & & & & & \\ f & & & \\ x_0[\{f\}] & & & & \\ x_0[\{f\}] & & & & \\ & & & & \\ x_1[\{f\}] & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

 $x_n[\{f\}]$

```
R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                 x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
\Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f\}]
x_1[\{f\}]

ightharpoonup R-NSIM-FENCE with x_0 and y_0;
x_2[\{f\}]
```

```
\exists y_1, z_1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
       x_0[\{f\}]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]z' \wedge z \wedge x[\{f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]z' \wedge z \wedge x] \wedge x[\{f]z' \wedge z \wedge x] \wedge x[\{f]z' \wedge z \wedge x[\{f]z' \wedge z \wedge x] \wedge x[\{f]z' \wedge z \wedge x] \wedge x[\{f]z' \wedge x \wedge x[\{f]z' \wedge x \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x] \wedge x[\{f]z' \wedge x[\{f]z' \wedge x] \wedge
       x_1[\{f\}]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    y_1

ightharpoonup R-NSIM-FENCE with x_0 and y_0;
       x_2[\{f\}]
x_n[\{f\}]
```

 $x_n[\{f\}]$

```
\exists y_1, z_1.
                                                       R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                     x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
x_0[\{f\}]
                                                     \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]
x_1[\{f\}]
                                           y_1

ightharpoonup R-NSIM-FENCE with x_0 and y_0;

ightharpoonup S-Feats with x_1 and z_1
x_2[\{f\}]
```

```
\exists y_1.
                                                        R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                       x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
x_0[\{f\}]
                                                       \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f\}]
x_1[\{f\}] \cdots \not\sim_\varnothing

ightharpoonup R-NSIM-FENCE with x_0 and y_0;

ightharpoonup S-Feats with x_1 and z_1
x_2[\{f\}]
x_n[\{f\}]
```

```
\exists y_1.
                                                       R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                     x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
x_0[\{f\}]
                                                      \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]
x_1[\{f\}] \cdots \sim \not\sim_\varnothing

ightharpoonup R-NSIM-FENCE with x_0 and y_0;

ightharpoonup S-Feats with x_1 and z_1
x_2[\{f\}]

ightharpoonup R-NSIM-FENCE with x_1 and y_1;
x_n[\{f\}]
```

```
\exists y_1, y_2, z_2.
                                                     R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                   x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
x_0[\{f\}]
                                                   \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]
x_1[\{f\}]
                                         y_1

ightharpoonup R-NSIM-FENCE with x_0 and y_0;
                                        f

ightharpoonup S-Feats with x_1 and z_1
x_2[\{f\}]

ightharpoonup R-NSIM-FENCE with x_1 and y_1;
   f
x_n[\{f\}]
```

 $x_n[\{f\}]$

```
\exists y_1, y_2, z_2.
                                                    R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                  x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
x_0[\{f\}]
                                                   \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]
x_1[\{f\}]
                                         y_1

ightharpoonup R-NSIM-FENCE with x_0 and y_0;
                                       f

ightharpoonup S-Feats with x_1 and z_1
x_2[\{f\}]

ightharpoonup R-NSIM-FENCE with x_1 and y_1;
  f

ightharpoonup S-Feats with x_2 and z_2
```

 $x_n[\{f\}]$

```
\exists y_1, y_2.
                                                     R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                   x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
x_0[\{f\}]
                                                    \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]
x_1[\{f\}]
                                          y_1

ightharpoonup R-NSIM-FENCE with x_0 and y_0;
                                        f

ightharpoonup S-Feats with x_1 and z_1
x_2[\{f\}] \cdots \sim \not\sim_\varnothing

ightharpoonup R-NSIM-FENCE with x_1 and y_1;

ightharpoonup S-Feats with x_2 and z_2
```

```
\exists y_1, y_2.
                                                      R-NSIM-FENCE (for F = \{f\} and G = \emptyset):
                                                    x[\{f\}] \wedge x \not\sim_{\varnothing} y \wedge c
x_0[\{f\}]
                                                     \Rightarrow \exists z, z' \cdot x[f]z \wedge y[f]z' \wedge z \not\sim_{\varnothing} z' \wedge x[\{f]
x_1[\{f\}]
                                          y_1

ightharpoonup R-NSIM-FENCE with x_0 and y_0;
                                         f

ightharpoonup S-Feats with x_1 and z_1
x_2[\{f\}] \cdots \sim \not\sim_{\varnothing}

ightharpoonup R-NSIM-FENCE with x_1 and y_1;

ightharpoonup S-Feats with x_2 and z_2
x_n[\{f\}]
```

Table of Contents

Description of filesystems
 Unix filesystems
 Static description
 Directory update

2. Constraints Definitions Basic constraints Negation

3. Usages Decidability of the First-Order Theory Automated Specification for Scripts: Proof of Concer

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc:

▶ Universal

$$\forall \exists \cdots \forall X \cdot c$$

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc:

▶ Universal, switch it to existential:

$$\forall \exists \cdots \forall X \cdot c \implies \neg \exists \forall \cdots \exists X \cdot \neg c$$

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc:

▶ Universal, switch it to existential:

$$\forall \exists \cdots \forall X \cdot c \implies \neg \exists \forall \cdots \exists X \cdot \neg c$$

Existential:

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc:

▶ Universal, switch it to existential:

$$\forall \exists \cdots \forall X \cdot c \implies \neg \exists \forall \cdots \exists X \cdot \neg c$$

- Existential:
 - ▶ If there is an other bloc before

$$\forall \exists \cdots \forall Y \cdot \exists X \cdot c$$

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc:

▶ Universal, switch it to existential:

$$\forall \exists \cdots \forall X \cdot c \implies \neg \exists \forall \cdots \exists X \cdot \neg c$$

- Existential:
 - ▶ If there is an other bloc before, use the given technique:

$$\forall \exists \cdots \forall Y \cdot \exists X \cdot c \implies \forall \exists \cdots \forall Y, X' \cdot c'$$

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc:

▶ Universal, switch it to existential:

$$\forall \exists \cdots \forall X \cdot c \implies \neg \exists \forall \cdots \exists X \cdot \neg c$$

- Existential:
 - ▶ If there is an other bloc before, use the given technique:

$$\forall \exists \cdots \forall Y \cdot \exists X \cdot c \implies \forall \exists \cdots \forall Y, X' \cdot c'$$

► If not

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$.

Take any closed formula, look at the last quantifier bloc:

▶ Universal, switch it to existential:

$$\forall \exists \cdots \forall X \cdot c \implies \neg \exists \forall \cdots \exists X \cdot \neg c$$

- Existential:
 - ▶ If there is an other bloc before, use the given technique:

$$\forall \exists \cdots \forall Y \cdot \exists X \cdot c \implies \forall \exists \cdots \forall Y, X' \cdot c'$$

▶ If not, then it is only a satisfiability question.

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$."

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$."

Here is what we have:

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- **...**
- ▶ there is no y[f]x with $x \in X$ and $y \notin X$.

Then c is equivalent to g_c .

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$."

Here is what we have:

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- **...**
- ▶ there is no y[f]x with $x \in X$ and $y \notin X$.

Then c is equivalent to g_c .

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$."

Here is what we have:

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- **...**
- ▶ there is no y[f]x with $x \in X$ and $y \notin X$.

Then c is equivalent to g_c .

Lukily:

$$\exists X, x \cdot (y[f]x \wedge c)$$

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X' \cdot c'$."

Here is what we have:

Lemma

Let c be a clause $c = g_c \wedge \exists X \cdot l_c$ such that:

- **...**
- ▶ there is no y[f]x with $x \in X$ and $y \notin X$.

Then c is equivalent to g_c .

Lukily:

$$\exists X, x \cdot (y[f]x \land c) \quad \Rightarrow \quad \neg y[f] \uparrow \land \forall x \cdot (y[f]x \rightarrow \exists X \cdot c)$$

Table of Contents

Description of filesystems
 Unix filesystems
 Static description
 Directory update

Constraints Definitions Basic constraints Negation

3. Usages

Automated Specification for Scripts: Proof of Concept

Demo!