Feature constraints
to modelise Unix filesystems

Nicolas Jeannerod

IRIF

February 7, 2018

1/27

The ColLiS Project

Shell

2/27

The ColLiS Project

Translation

Shell —— IL

2/27

The ColLiS Project

She” Translation D

2/27

The ColLiS Project

Shell

Translation

0.

Specification in
Tree Transducers

2/27

The ColLiS Project

She” Translation D

Specification in Specification in
Feature Trees Tree Transducers

2/27

The ColLiS Project

Shell — = D

Specification in Specification in
Feature Trees Tree Transducers

2/27

Specifications.. then what?

Find accessible states that lead to errors.

3/27

Specifications.. then what?

Find accessible states that lead to errors.

> “Accessible”? Where the specification is satisfiable.

3/27

Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.

> “Lead to errors”"? Where the script exists abnormally.

3/27

Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.
> “Lead to errors”"? Where the script exists abnormally.

Fill automated report to script’'s maintainer.

3/27

Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.
> “Lead to errors”"? Where the script exists abnormally.

Fill automated report to script’'s maintainer.

Check properties

3/27

Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.
> “Lead to errors”"? Where the script exists abnormally.

Fill automated report to script’'s maintainer.

Check properties:

> \V/Tin, Tout * (SPeCsl (rinv Tout) e Specg, (routa Tzn))

3/27

Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.
> “Lead to errors”"? Where the script exists abnormally.

Fill automated report to script’'s maintainer.

Check properties:
> \V/Tin, Tout * (SPeCsl (rinv Tout) e Specg, (routa Tzn))

> Vrin, Tout - (Specy(Tin, Tout) — Tout[home] = 7, [home])

3/27

Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.
> “Lead to errors”"? Where the script exists abnormally.

Fill automated report to script’'s maintainer.

Check properties:
> \V/Tin, Tout * (SPeCsl (rinv Tout) e Specg, (routa Tzn))
> Vrin, Tout - (Specy(Tin, Tout) — Tout[home] = 7, [home])

> V?“m, Tout * (SPGCS(Tz‘m?‘out) & Tout = Tin)

3/27

Specifications.. then what?

Find accessible states that lead to errors.
> “Accessible”? Where the specification is satisfiable.
> “Lead to errors”"? Where the script exists abnormally.

Fill automated report to script’'s maintainer.

Check properties:
> 7in, Tout * (specsl(rin,rout) > specs2(r0ut,rm))
> Vrin, Tout - (Specy(Tin, Tout) — Tout[home] = 7, [home])
> Vrin, Tout (SPEC4(Tin, Tout) < Tout = Tin)
(

> vrin; Tout * I’ SpeC51 (Tznv) A spec,, (74/7 rout)) S Tout = Tin)

3/27

Table of Contents

1. Description of filesystems
Unix filesystems

4/27

Unix filesystem

/

u% NC
lib/

» Basically a tree with labelled nodes and edges;

5/27

Unix filesystem

/

u% NC
lib/
libc.so/ \Libc.so.S

» Basically a tree with labelled nodes and edges;

» There can be sharing at the leafs (hard link between files);

5/27

Unix filesystem

lib/ ///
libc.so/ \Libc.so.S
» Basically a tree with labelled nodes and edges;
» There can be sharing at the leafs (hard link between files);

» There can be pointers to other parts of the tree (symbolic links)

5/27

Unix filesystem

lib/ B
libc.so/ \Libc.so.S

» Basically a tree with labelled nodes and edges;
» There can be sharing at the leafs (hard link between files);

» There can be pointers to other parts of the tree (symbolic links)
which may form cycles.

5/27

Table of Contents

1. Description of filesystems

Static description

6/27

Static description

7/27

Static description

7/27

Static description

7/27

Static description

7/27

Static description

T

us/ etc

v w

1ib/ : skel
. ,
u[2]

ocaml/ .

rlusr]v A v[lib]z

c = Ju,v,z,w-
{ A rletc]w A w[skel|u

Static description

c = Elu,v,x,w-{

T

us/ etc

v w

1ib/ : skel
. ,
u[2]

ocaml/ .

rlusr]v A v[lib]z A z[ocaml] T
A rletc]w A w[skel|u

7/27

Static description

c = Elu,v,x,w-{

T

us/ etc

v w

1ib/ : skel
. ,
u[2]

ocaml/ .

rlusr]v A v[lib]z A z[ocaml] T
A rletclw A w[skel|u A u[2]

7/27

Table of Contents

1. Description of filesystems

Directory update

8,/27

Directory update

usr/ \etc
lib/
/ocaml

9/27

Directory update

usr/ \etc

mkdir /usr/lib/ocaml
lib/

/ocaml

9/27

Directory update

usr/ \etc

mkdir /usr/lib/ocaml

lib/
/ocaml

9/27

Directory update

T r/
usr/ \etc usr/ \etc
mkdir /usr/lib/ocaml
lib/ lib/
/ocaml /ocaml
g
/
C =

9/27

Directory update

v

lib/

X

/ocaml

r

'llSI'/ \etc

C

mkdir /usr/lib/ocaml

/ / /
Elv,v,%,x,y :

9/27

Directory update

T 7!
usr/ \etc usr/ \etc
v 1)/
mkdir /usr/lib/ocaml
lib/ lib/
xX 1'/
/ocaml /ocaml
y'[2]

r’is r with usr — v/

A v is v with 1ib — 2/
Az’ is x with ocaml — 3/
A y'[2]

/ / /
¢ = Jv,v,x, 2,y -

9/27

Er.. is that really what we want?

> Asymmetric:
yis x with f — v

10/27

Er.. is that really what we want?

> Asymmetric:
yis x with f — v

» Makes it hard to eliminate variables:

EI:U-< yis x with f — v)

A zis x with g - w

10/27

Er.. is that really what we want?

> Asymmetric:
yis x with f — v

» Makes it hard to eliminate variables:
EI:U-< yis x with f — v)

A zis x with g - w

» Contains in fact two pieces of information:

10/27

Er.. is that really what we want?

> Asymmetric:
yis x with f — v

» Makes it hard to eliminate variables:

EI:U-< yis x with f — v)

A zis x with g - w

» Contains in fact two pieces of information:
» “y and x may be different in f but are identical everywhere else”

10/27

Er.. is that really what we want?

> Asymmetric:
yis x with f — v

» Makes it hard to eliminate variables:

EI:U-< yis x with f — v)

A zis x with g - w

» Contains in fact two pieces of information:
» “y and x may be different in f but are identical everywhere else”

» "y points to v through f"

10/27

Er.. is that really what we want?

> Asymmetric:
yis x with f — v

» Makes it hard to eliminate variables:

EI:U-< yis x with f — v)

A zis x with g - w

» Contains in fact two pieces of information:
» “y and x may be different in f but are identical everywhere else”

» "y points to v through f":
ylflv

10/27

Er.. is that really what we want?

> Asymmetric:
yis x with f — v

» Makes it hard to eliminate variables:

EI:U-< yis x with f — v)

A zis x with g - w

» Contains in fact two pieces of information:
» "y and x may be different in f but are identical everywhere else”:

Yy

» "y points to v through f":
ylflv

10/27

~: Much better

> Allows to express the update:

“yisx with f =" = y~razAy[flv

11/27

~: Much better

> Allows to express the update:

“yisx with f =" = y~razAy[flv

» Symmetric and transitive:
Yyr~pr = Ty
y~prNzeopxr = Yo~pz

11/27

~: Much better

> Allows to express the update:

“yisx with f =" = y~razAy[flv

» Symmetric and transitive:
Yyr~pr = Ty
y~prNzeopxr = Yo~pz

» Other properties:

YoprNzogr = Y pe 2
Y~fprANygx < Yyrgo

11/27

~: Much better

> Allows to express the update:

“yisx with f =" = y~razAy[flv

» Symmetric and transitive:
Yyr~pr = Ty
y~prNzeopxr = Yo~pz

» Other properties:
YrpTNZg T = Y gy 2
Y~fprANygx < Yyrgo

» Allows to remove variables:

EI:E-(yis z with f — v >

A zis x with ¢ = w
11/27

~: Much better

> Allows to express the update:

“yisx with f =" = y~razAy[flv

» Symmetric and transitive:
Yyr~pr = Ty
y~prNzeopxr = Yo~pz

» Other properties:
YrpTNZg T = Y gy 2
Y~fprANygx < Yyrgo

» Allows to remove variables:
2w [Y Aylfl
Nz gz A z[glw
11/27

~: Much better

> Allows to express the update:

“yisx with f =" = y~razAy[flv

» Symmetric and transitive:
Yyr~pr = Ty
y~prNzeopxr = Yo~pz

» Other properties:
YrpTNZg T = Y gy 2
Y~fprANygx < Yyrgo

» Allows to remove variables:
A yrEAylfle
So- (e) o uifon s
11/27

~: Much better

> Allows to express the update:

“yisx with f =" = y~razAy[flv

» Symmetric and transitive:
Yyr~pr = Ty
y~prNzeopxr = Yo~pz

» Other properties:
YrpTNZg T = Y gy 2
Y~fprANygx < Yyrgo

» Allows to remove variables:

Hx-(y~rx Aylflv

JILEN) e sl nclalu Ay Sy

11/27

Table of Contents

2. Constraints
Definitions

12/27

Model and Constraints

ftree = F ~ ftree

13/27

Model and Constraints

ftree = F ~ ftree

» F infinite set of features (names for the edges);
> F ~~ ftree: partial function with finite domain;

13/27

Model and Constraints

ftree = F ~ ftree

» F infinite set of features (names for the edges);
> F ~~ ftree: partial function with finite domain;

» Infinite set of variables z, y, etc.;
> f e F, F CF finite.

Equality =y
Feature z[fly z[f] 1
Fence x[F] xRy

Absence

Similarity

13/27

Model and Constraints

ftree = F ~ ftree

» F infinite set of features (names for the edges);
> F ~~ ftree: partial function with finite domain;
» Infinite set of variables z, y, etc.;

> f e F, F CF finite.

Equality =1y
Feature z[fly z[f] 1 Absence
Fence z[F) TRy Similarity

» Composed with =, A, V, 3z, Vz (no quantification on features);

13/27

Model and Constraints

ftree = F ~ ftree

» F infinite set of features (names for the edges);
> F ~~ ftree: partial function with finite domain;
» Infinite set of variables z, y, etc.;

> f e F, F CF finite.

Equality =1y
Feature z[fly z[f] 1 Absence
Fence z[F) TRy Similarity

» Composed with =, A, V, 3z, Vz (no quantification on features);
Wanted: (un)satisfiability of these constraints;
» Bonus point for incremental procedures.

v

13/27

Semantics

T.pEc

» 7 the model of all feature trees:
> p: V()= T,

14/27

Semantics

T.pEc

» 7 the model of all feature trees:
> p: V()= T,

Equality: T,p FE z=y if p(x)=p(y)

14/27

Semantics

T.pEc

» 7 the model of all feature trees:
> p: V()= T,

Equality: T,p FE z=y if p(x)=p(y)
Feature: T,p E z[fly if p(x)(f) =py)
Absence: T,p = z[f]T if [¢ dom(p(x))

14/27

Semantics

» 7 the model of all feature trees:

> p: V()= T,

Equality:
Feature:
Absence:

Fence:

T.p
T,p
T.p
T,p

momomm

T.pEc

=

=

—

<

oo A
—

p(x) = p(y)
p(x)(f) = p(y)

J ¢ dom(p(x))
don(p(x)) C F

14/27

Semantics

T.pEc

» 7 the model of all feature trees:
> p: V()= T,

Equality: T,p E az=y if p(z)=py)

Featwre: Top = alfly if p@)(f) = p(y)
Absence: T,p E z[f]T if f ¢ dom(p(x))

Fence: T,p E z[F] if dom(p(x)) CF
Similarity: T,p E z+py if px) | F = ply) | F

14/27

Table of Contents

2. Constraints

Basic constraints

15/27

Game plan

» Rewriting system;

16,27

Game plan

» Rewriting system;

» Puts constraints in normal form (not necessarily unique);

16,27

Game plan

» Rewriting system;
» Puts constraints in normal form (not necessarily unique);

> Respects equivalences;

16,27

Game plan

» Rewriting system;
» Puts constraints in normal form (not necessarily unique);
> Respects equivalences;

> Normal forms: either L or with nice properties.

16,27

Basic rewriting system

zifilza Ao A x| fu]x (n>1)
e[fly Nxlf] 1

z[fly A x[F] (f¢F)
Clash Patterns

17/27

Basic rewriting system

zifilza Ao A x| fu]x (n>1)
e[fly Nxlf] 1

z[fly A x[F] (f¢F)
Clash Patterns

IX,z-(x=yANc) = IX-cfxz—y}
X,z (@[flynalflane) = 3X - ([flyne{z = y})
rT~pYNT ~gyNc = T~pngy/Nce
Simplification Rules

17/27

Basic rewriting system

zifilza Ao A x| fu]x (n>1)
e[fly Nxlf] 1

z[fly A x[F] (f¢F)
Clash Patterns

IX,z-(x=yANc) = IX-cfxz—y} (x #y)

X,z (@[flynalflane) = 3X - ([flyne{z = y}) (y # 2)
rT~pYNT ~gyNc = T~pngy/Nce
Simplification Rules

x~pyAz[flene = xzrpynz[flzAy[flezAe (f¢F)
zpyAzfltAe = z~pyAs[fITAylflTAc (fEF)
zopyANz[GlAe = x~pyAz[GIAyYy[FUG]Ac
T~pyYNT ~g 2z NANe = T~pYNANT ~g 2 ANY ~pug 2N C
(If my&/HzHgFUG)
Propagation Rules

17/27

Properties

Lemma

The basic constraint system terminates and yields a clause that is
equivalent to the first one.

18/27

Properties

Lemma

The basic constraint system terminates and yields a clause that is
equivalent to the first one.

Lemma
Let ¢ be a clause ¢ = g. A 31X - . such that

18/27

Properties

Lemma

The basic constraint system terminates and yields a clause that is
equivalent to the first one.

Lemma
Let ¢ be a clause ¢ = g. A 3X -l such that:

» c is in normal form;

18/27

Properties

Lemma

The basic constraint system terminates and yields a clause that is
equivalent to the first one.

Lemma

Let ¢ be a clause ¢ = g. A 3X -l such that:
» c is in normal form;
> V(g) N X =g,

» every literal in . is about X;

18/27

Properties

Lemma

The basic constraint system terminates and yields a clause that is
equivalent to the first one.

Lemma
Let ¢ be a clause ¢ = g. A 3X -l such that:
» c is in normal form;
> V(g) N X =g,
» every literal in . is about X;
» there is no y[f]z withx € X and y ¢ X.

18/27

Properties

Lemma

The basic constraint system terminates and yields a clause that is
equivalent to the first one.

Lemma
Let ¢ be a clause ¢ = g. A 3X -l such that:
» c is in normal form;
> V(g) N X =g,
» every literal in . is about X;
» there is no y[f]z withx € X and y ¢ X.

Then c is equivalent to g..

18/27

Table of Contents

2. Constraints

Negation

19/27

Negation: new players, new rules

aka La Slide de la Mort

20/27

Negation: new players, new rules

~alflyne = (alf] V3 alflz Ay do 2) Ac
—z[f] T Ae = Fz-z[flzAc
Simple Replacement Rules

20/27

Negation: new players, new rules

~alflyne = (alf] V3 alflz Ay do 2) Ac
—z[f] T Ae = Fz-z[flzAc
Simple Replacement Rules

z[FIN—z[G]ANe = z[F]ANx(F\G)Ac
[FINzdbgyhe = z[FIA(~y[FUGIVz #pay) Ac
rrpyYANTAcyNe = TR YANTFpg YA
More Replacement Rules

20/27

Negation: new players, new rules

z[FIN—z[G]ANe = z[F]ANx(F\G)Ac
z[F]Nz Agyhe = x[F]/\(ﬂy[FUG]\/x%F\Gy)/\c
TApyYANTAgyNe = TpyATFpgyAc
More Replacement Rules

20/27

Negation: new players, new rules

z[FIN—z[G]ANe = z[F]ANx(F\G)Ac
zlFInzdbgyhe = z[FIA(~y[FUGIVz #pay) Ac
TApyYANTAgyNe = TpyATFpgyAc
More Replacement Rules

20/27

Negation: new players, new rules

x(F) = \/ Jz - z[f]z

z[F]AN—z[G]ANe = z[F|ANz(F\G)Ac
z[F]Nz Agyhe = a?[F]/\(ﬂy[FUG]\/:L'%F\Gy)/\c
TApyANTAgyNe = TpyATFpgyAc
More Replacement Rules

20/27

Negation: new players, new rules

etpyim \ (F G V32 el L))

fer Vaz, 2 (2[flz Aylf]e Az o 2)

z[F]N—z[G]ANe = z[F]ANz(F\G)Ac
[FINzdbgyhe = z[FIA(~y[FUGIVz #pmay) Ac
TR yYANTAagyNe = TepyANTFpgyAc
More Replacement Rules

20/27

Negation: new players, new rules

r#ry:=\/

fer

< 32 (a[f] 1 Aylf]2) v 3z - (2[flz Aylf] 1) >
V3z, 2 (z][flz ANy[f]Z Az Ay)

z[FIN—z[G]ANe = z[F]ANz(F\G)Ac
c[FInzdbgyhe = z[FIA(~y[FUGIVz #pey) Ac
repyANTdgyhe = TopyATFpgyAe
More Replacement Rules

rpyAz[GlAe = xz~pyA(—z[FUG]Va(F\G))Ac
zrpyA-x[GlAe = xApyA-z[G)A-y[G]Ace
TAFpYANxT dgzAhe = x&py/\(a:%JFng\/x;féF\Gz)/\c
TApYANTAgzANe = TRpYANT A zANYydgzNe
Enlargement and Propagation Rules

Negation: new players, new rules

etpyim \ (F G V32 el L))

fer Vaz, 2 (2[flz Aylf]e Az o 2)

z[F]N—z[G]ANe = z[F]ANz(F\G)Ac
[FINzdbgyhe = z[FIA(y[FUGIVz #pmay) Ac
rrRpyYANTAcyYNe = TR YANTFpg YA
More Replacement Rules

20/27

Negation: new players, new rules

etpyim \ (F G V32 el L))

fer Vaz, 2 (2[flz Aylf]e Az o 2)

z[F]N—z[G]ANe = z[F]ANz(F\G)Ac
[FINzdbgyhe = z[FIA(~y[FUGIVz #pmay) Ac
rrRpyYANTAcyYNe = TR YANTFpg YA
More Replacement Rules

20/27

Negation: new players, new rules

r#ry:=\/

fer

< 32 (a[f] T Aylf]2) v 3z - (2[flz Aylf] 1) >
V3z, 2 (z][flz ANy[f]Z Az Ay)

z[FIN—z[G]Ne = z[F]ANz(F\G)Ac
e[FINzdgyhe = z[FIA(-y[FUGIVe#mngy) e
repyANTdgyhe = TopyATFpgyANe
More Replacement Rules

z[F] = "z has no feature outside F"
T %y = “there is a feature outside G that differentiates x and y"

20/27

Negation: new players, new rules

r#ry:=\/

fer

< 32 (a[f] T Aylf]2) v 3z - (2[flz Aylf] 1) >
V3z, 2 (z][flz ANy[f]Z Az Ay)

z[FIN—z[G]Ne = z[F]ANz(F\G)Ac
e[FINzdgyhe = z[FIA(-y[FUGIVe#mngy) e
repyANTdgyhe = TopyATFpgyANe
More Replacement Rules

z[F] = "z has no feature outside F"
T %y = “there is a feature outside G that differentiates x and y"

» either it is in F,

» or it is not,

20/27

Negation: new players, new rules

r#ry:=\/

fer

< 32 (a[f] T Aylf]2) v 3z - (2[flz Aylf] 1) >
V3z, 2 (z][flz ANy[f]Z Az Ay)

z[FIN—z[G]Ne = z[F]ANz(F\G)Ac
e[FINzdgyhe = z[FIA(-y[FUGIVe#mngy) e
repyANTdgyhe = TopyATFpgyANe
More Replacement Rules

z[F] = "z has no feature outside F"
T %y = “there is a feature outside G that differentiates x and y"

» ecither it is in F', and we can list all the cases;

» or it is not,

20/27

Negation: new players, new rules

r#ry:=\/

fer

< 32 (a[f] T Aylf]2) v 3z - (2[flz Aylf] 1) >
V3z, 2 (z][flz ANy[f]Z Az Ay)

z[FIN—z[G]Ne = z[F]ANz(F\G)Ac
e[FINzdgyhe = z[FIA(-y[FUGIVe#mngy) e
repyANTdgyhe = TopyATFpgyANe
More Replacement Rules

z[F] = "z has no feature outside F"
T %y = “there is a feature outside G that differentiates x and y"

» either it is in F', and we can list all the cases;
» or it is not, and since z[F| then —y[F U G].

20/27

Properties

Lemma

The constraint system terminates and yields a clause that is equivalent to
the first one.

21/27

Properties

Lemma

The constraint system terminates and yields a clause that is equivalent to
the first one.

Lemma
Let ¢ be a clause ¢ = g. AN 3X - . such that:
» c is in normal form;
> V(ge) N X =@,
» every literal in . is about X;
» there is no y[f]z withxz € X andy ¢ X.

Then c is equivalent to g..

21/27

Does that even terminate?
R-NSIM-FENCE:

z[F] Nz AgyAc
= x[F]/\(ﬂy[FUG]\/x%F\G y) Ac

22/27

Does that even terminate?

R-NSIM-FENCE (for F' = {f} and G = @):

z{fHNzHdzyAc
= zl{fHAy{fHVa#Fry) Ac

22/27

Does that even terminate?

R-NSIM-FENCE (for F' = {f} and G = @):

el{f}] A oy e
= 322 2[fle Ay[flF Az ko 2 Al{f

22/27

Does that even terminate?

R-NSIM-FENCE (for F' = {f} and G = @):

e F A oy ne
zo[{f}] 7o oo Az, 2" - x[flz ANy[fl2 Az oy 2 Nal{f

£

22/27

Does that even terminate?

R-NSIM-FENCE (for F' = {f} and G = @):

e F A oy ne
zo[{f}] 7o oo Az, 2" - x[flz ANy[fl2 Az oy 2 Nal{f

z1[{f}] > R-NSm-Fence with xg and yg;

22/27

Does that even terminate?

Jy1, z1- : R-NSIM-FENCE (for F = {f} and G = 2):

e{fHAz oy e
zo[{f}] Yo = 3z, - z[fle ANy[f]Z Nz g 2 Na[{f

z1[{f}] 21 gk W1 > R-NSmu-Fence with zg and yp;

22/27

Does that even terminate?

Jy1, 210 : R-NSIM-FENCE (for F = {f} and G = @)
f|
s{fHAz Az yNc
moltf}] W= 3 alflz aylf)e Az e # Aallf
f f
z1[{f}] 21 gk W1 > R-NSmu-Fence with zg and yp;
f ‘ » S-Fears with 21 and z;
za[{f}]
£
£
zn[{f}]

22/27

Does that even terminate?

3y : R-NSIM-FENCE (for F = {f} and G = 2):
£
s{fHAz Az yNc
wol() WS S el Al A e # A al(S
f f
z1[{f}] 7o Y1 » R-NSmM-Fence with xg and yo;
f ‘ » S-Feats with 1 and z;
za[{f}]
f|
£
zn[{f}]

22/27

Does that even terminate?

Fy1- © R-NSIM-FENCE (for F = {f} and G = ©):
£
zo[{f}] % s[{fHANztzyAc |
0 ‘ - 32,2 alf)s Aylf1# Az s o Al{f
f f
z1[{f}] 7o Y1 » R-NSmM-Fence with xg and yo;
f ‘ » S-Feats with 1 and z;
z2[{f}] > R-NSm-Fence with 7 and yg;
f|
f|
zn[{f}]

22/27

Does that even terminate?

Y1, Y2, 22 : R-NSIM-FENCE (for F = {f} and G = 2):
£
zo[{f}] % s[{fHANztzyAc |
0 S 3,2 alflz AYlSIE A5 o 2 AlLF
£ £ ‘
z1[{f}] 1 > R-NSm-Fence with zg and yo;
f ‘ f ‘ » S-Feats with 1 and z;
332[{f}] Z2 by Y2 > R-NSm-Fence with 7 and yg;
£
£
zn[{f}]

22/27

Does that even terminate?

Y1, Y2, 22 : R-NSIM-FENCE (for F = {f} and G = 2):
£
0 = 3 alfls A A 2 o 2 AlLS
£ £ ‘
z1[{f}] 1 > R-NSm-Fence with zg and yo;
f ‘ f ‘ » S-Feats with 1 and z;
xo[{f}] 22 Ay Y2 P> R-NSm-FeNnce with 21 and y3;
f ‘ » S-Feats with 29 and 2o
f|
zn[{f}]
f|

22/27

Does that even terminate?

Jy1, yo-

zo[{f}]

w2[{f}] *o

R-NSIM-FENCE (for F' = {f} and G = @):

» S-Fears with 21 and z;

f

el A oy ne |
= 3 alfls A A 2 o 2 AlLS

t]

n > R-NSm-Fence with xg and yg;

Y2 > R-NSm-Fence with 7 and yg;

> S-Frats with x9 and z9

22/27

Does that even terminate?

Jy1, yo-

zo[{f}]

w2[{f}] *o

R-NSIM-FENCE (for F' = {f} and G = @):

S-FeaTts with 1 and z;

f

Aoy |
= 32,2 - 2[fla Aylfld Nz dte 2 Nal{f

t]

U1 R-NSm-FENCE with g and yo;

>
>
Y2 > R-NSm-Fence with 7 and yg;
> S-Frats with x9 and z9
>

22/27

Does that even terminate?

Hyhy% s

zo[{f}]

s Yn:

*o

R-NSIM-FENCE (for F' = {f} and G = @):

f

Sl A oy ne |
S 32 alfls A A 2 o 2 AlLS

t|

n R-NSm-FENCE with g and yo;

f ‘ S-FeaTts with 1 and z;

[}

>
>
2 > R-NSm-Fence with 7 and yg;
> S-Frats with x9 and z9
>

22/27

Table of Contents

3. Usages
Decidability of the First-Order Theory

23/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc:

» Universal

v3...vVX.c

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc:

» Universal, switch it to existential:

vV3i...VX.c = -3V.--3X- -—c

24/27

Weak Quantifier Elimination
Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.
Take any closed formula, look at the last quantifier bloc:
» Universal, switch it to existential:

vV3i...VX.c = -3V.--3X- -—c

» Existential:

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc:

» Universal, switch it to existential:

vV3i...VX.c = -3V.--3X- -—c

» Existential:
» If there is an other bloc before

vV3.-.VY - -3X -¢

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc:

» Universal, switch it to existential:

vV3i...VX.c = -3V.--3X- -—c

» Existential:
» If there is an other bloc before, use the given technique:

VI VY - 3X e = VI VYV X'/

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc:

» Universal, switch it to existential:

vV3i...VX.c = -3V.--3X- -—c

» Existential:
» If there is an other bloc before, use the given technique:

V3. ..VY - -3X.¢c = V3I.-. VY. X' ./
> |f not

24/27

Weak Quantifier Elimination

Assume given a technique to transform 3X - ¢ into an equivalent VX' - (.

Take any closed formula, look at the last quantifier bloc:

» Universal, switch it to existential:

vV3i...VX.c = -3V.--3X- -—c

» Existential:
» If there is an other bloc before, use the given technique:

VI VY - 3X e = VI VYV X'/
> If not, then it is only a satisfiability question.

24/27

Weak Quantifier Elimination

Previous slide said: "“Assume given a technique to transform 34X - ¢
into an equivalent VX' - "

25/27

Weak Quantifier Elimination

Previous slide said: "“Assume given a technique to transform 34X - ¢
into an equivalent VX' - "
Here is what we have:

Lemma

Let ¢ be a clause c = g. A 3X - 1. such that:
> ..

» there is no y[f]z withxz € X andy ¢ X.
Then c is equivalent to g..

25/27

Weak Quantifier Elimination

Previous slide said: "“Assume given a technique to transform 34X - ¢
into an equivalent VX' - "
Here is what we have:

Lemma

Let ¢ be a clause c = g. A 3X - 1. such that:
> ..

» there is no y[f]z withz € X andy ¢ X.
Then c is equivalent to g..

25/27

Weak Quantifier Elimination

Previous slide said: "“Assume given a technique to transform 34X - ¢
into an equivalent VX' - "
Here is what we have:

Lemma

Let ¢ be a clause c = g. A 3X - 1. such that:
> ..

» there is no y[f]z withz € X andy ¢ X.

Then c is equivalent to g..

Lukily:

X,z - (y[flz Ae)

25/27

Weak Quantifier Elimination

Previous slide said: "“Assume given a technique to transform 34X - ¢
into an equivalent VX' - "
Here is what we have:

Lemma

Let ¢ be a clause c = g. A 3X - 1. such that:
> ..

» there is no y[f]z withz € X andy ¢ X.

Then c is equivalent to g..

Lukily:

3X,z-(ylflene) = —wlf] T AVz- (y[fle — 3IX -¢)

25/27

Table of Contents

3. Usages

Automated Specification for Scripts: Proof of Concept

26/27

27/27

	Description of filesystems
	Unix filesystems
	Static description
	Directory update

	Constraints
	Definitions
	Basic constraints
	Negation

	Usages
	Decidability of the First-Order Theory
	Automated Specification for Scripts: Proof of Concept

