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A B S T R A C T

The POSIX shell language defies conventional wisdom of compiler construction on several levels: The shell
language was not designed for static parsing, but with an intertwining of syntactic analysis and execution by
expansion in mind. Token recognition cannot be specified by regular expressions and lexical analysis depends on
the parsing context and the evaluation context. Besides, the unorthodox design choices of the shell language fit
badly in the usual specification languages used to describe other programming languages. This makes the
standard usage of LEX and YACC as a pipeline inadequate for the implementation of a parser for POSIX shell. The
existing implementations of shell parsers are complex and use low-level character-level parsing code that is
difficult to relate to the POSIX specification. We find it hard to trust such parsers, especially when using them for
writing automatic verification tools for shell scripts.

This paper offers an overview of the technical difficulties related to the syntactic analysis of the POSIX shell
language. It also describes how we have resolved these difficulties using advanced parsing techniques (namely
speculative parsing, parser state introspection, context-dependent lexical analysis and longest-prefix parsing)
while keeping the implementation at a sufficiently high level of abstraction so that experts can check that the
POSIX standard is respected. The resulting tool, called MORBIG, is an open-source static parser for a well-defined
and realistic subset of the POSIX shell language. Its implementation crucially relies on the purity and in-
crementality of LR(1) parsers generated by MENHIR, a parser generator for OCAML.

1. Introduction

Scripts are everywhere on UNIX machines, and many of them are
written in POSIX shell. The POSIX shell is a central piece in the toolbox
of a system administrator who may use it to write scripts that perform
all kinds of repetitive administration tasks. Furthermore, scripts are
used in a systematic way by GNU/Linux distributions for specific tasks,
like for writing cron jobs which are regularly executed, init scripts
(depending on the init system) that start or stop services, or scripts that
are executed as part of the process of installing, removing or upgrading
software packages. The Debian GNU/Linux distribution, for instance,
contains 31,5821 of these so-called maintainer scripts, 31,330 of which
are written in POSIX shell.

These scripts are often executed with root privileges since they
have to act on the global system installation, for instance when in-
stalling software packages. As a consequence, erroneous scripts can
wreak havoc on a system, and there is indeed a history of disastrous
shell scripts. For instance, trivial mistakes in the installation scripts of

bumblebee and steam [1] led in both cases to removal of unrelated
files. One of the authors of this paper is responsible for having in-
troduced a similar bug in the Debian package cmigrep [2]. An ongoing
research project2 aims at using formal verification tools for analyzing
shell scripts and has so far found more than 150 bugs [3].

The first step when statically analyzing shell scripts is to analyze
their syntactic structure and to produce a syntax tree. This seems at first
sight an easy task: after all, the POSIX standard contains a grammar, so
one might think that a parser can be thrown together in a day or so
using what one has learned in an introductory course on compiler
construction. The reality is far from that! It starts with the fact that the
POSIX shell language was never designed for being statically analyzed.
In fact, the shell analyses pieces of syntax of a script on the fly, in a
process that is intertwined with an evaluation mechanism called ex-
pansion. By definition, a static parser cannot evaluate scripts to parse
them, so it must correctly simulate evaluation at the parsing level when
that is feasible, or reject scripts whose syntactic structure cannot be
decided statically. But this is only the start, the syntax of POSIX shell is
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full of pitfalls, which we will explain in detail in the next section and
which make it surprisingly difficult to write a parser for POSIX shell.

For this reason, existing implementations of shell interpreters con-
tain hand-crafted syntactic analyzers. Due to the way the shell seman-
tics is defined, they do not construct a complete syntax tree but produce
pieces of syntax on the fly. We could probably have taken one of these
implementations and tweaked it into constructing a complete syntax
tree. The problem is, how can we maintain such a parser in the long
run? If the parser’s source code is too low-level and too complex, any
modification in the standard will be difficult to take into account cor-
rectly and is likely to introduce a bug. The parser is an essential part of
our tool chain, if the parser produces incorrect syntax trees then all
formal analysis based on it will be worthless.

A standard technique to implement syntactic analyzers consists in
writing a high-level specification, which is automatically converted into
code. Using code generators is a software engineering practice which
allows the programmer to write high-level and easily maintainable
code. These tools take as input high-level formal descriptions of the
lexical conventions and of the grammar and produce low-level efficient
code using well-understood computational devices (typically finite-
state transducers for lexical analysis, and pushdown automata for par-
sing). This standard approach is trustworthy because (i) the high-level
descriptions of the lexical conventions and grammar are usually close to
their counterparts in the specification that reduces the probability of
programming errors; and (ii) the code generators are based on well-
known algorithms like LR-parsing that have been studied for over fifty
years [4], which reduces the probability that the generated code is
faulty. The problem with this approach is that the standard LEX-YACC

pipeline is inadequate for POSIX shell, as we will argue in the next
section. Despite the pitfalls of the shell language, we nonetheless
managed to maintain an important part of generated code in our im-
plementation, described in Section 3. To sum things up, we claim the
following contributions:

1. This paper provides an overview of the difficulties related to the
syntactic analysis of the POSIX shell language as well as a list of
technical requirements that we had to fulfill to implement a static
parser for this language.

2. This paper describes a modular architecture that arguably simplifies
code review, especially because it follows the POSIX specification
decomposition into token recognition and syntactic analysis, and
because it embeds the official BNF grammar, which makes the
mapping between the specification and the implementation more
explicit.

3. This paper is finally a demonstration that an LR(1) parser equipped
with a purely functional and incremental interface is a lightweight
solution to realize the advanced parsing techniques required by
POSIX shell parsing, namely speculative and reentrant parsing,
longest-match parsing as well as parsing-dependent “negatively
specified” lexing.

The Morbig parser described in this paper is a static parser for a
subset of the POSIX shell language, that is it constructs a concrete
syntax tree of a complete script without evaluating constructs of the
language, with the notable exception of the alias builtin as explained
in Section 2.3. The only limitations of Morbig are that it cannot handle
shell constructs that are inherently dynamic in nature: the eval builtin,
unrestricted use of the alias builtin (only its use outside of control
structures is permitted), and premature termination of a script by an
exit with trailing garbage in the file. These restrictions are justified by
the static nature of our parser.

Plan The rest of this article is organized as follows. We start by
discussing the difficulties that we have encountered with the syntax of
POSIX shell in Section 2. Section 3 explains how we could maintain a
modular, though nonstandard, design of our syntactic analyzer despite
the pitfalls of the shell language. In Section 4 we present some

applications that we have built on top of our library. We conclude with
some current limitations of our tool and plans for future work in
Section 5, give some benchmarks in Section 6, and compare our ap-
proach to related work in Section 7.

Description of the additional material This paper is an extended ver-
sion of a conference paper published at SLE’2018 [5]. The paper pre-
sentation is globally improved and it covers the following additional
material:

• We updated the paper to the latest version of the POSIX stan-
dard [6].

• Several new pitfalls of POSIX shell are described in Section 2 (the
exotic semantics of alias expansions, the proper delimitation of re-
served words, the inner structure of words, the complete description
of the specific grammar rules that annotate the POSIX shell
grammar, etc.).

• Several new implementation aspects of Morbig are detailed in
Section 3, including the parsing of word components, the parsing of
bracket regular expressions, and the internal state of the prelexer.

• The paper now includes the description of several applications of
Morbig in Section 4: a linter for shell scripts, a statistical analyzer of
a corpus of shell scripts, a C library to allow for interoperability with
other languages than OCaml, and an abstract syntax tree for shell
scripts.

• Finally, the paper reports in Section 5 on an experiment that com-
pares the behavior of Morbig and Dash on a testsuite of almost 7.5
million shell scripts obtained from the Software Heritage archive [7].

2. The perils of POSIX shell

The POSIX Shell Command Language is specified by the Open Group
and IEEE in the volume “Shell & Utilities” of the POSIX standard. Our
implementation is based on the latest published draft of this stan-
dard [6].

This standardization effort synthesizes the common concepts and
mechanisms that can be found in the most common implementations of
shell interpreters like bash or dash. Unfortunately, as said in the in-
troduction, it is really hard to extract a high-level declarative specifi-
cation out of these existing implementations because the shell language
is inherently irregular and because its unorthodox design choices fit
badly in the specification languages used by other programming lan-
guage standards.

Syntactic analysis is most often decomposed into two distinct
phases: (i) lexical analysis, which synthesizes a stream of tokens from a
stream of input characters by recognizing tokens as meaningful char-
acter subsequences and by ignoring insignificant character sub-
sequences such as layout; and (ii) parsing which synthesizes a parse tree
from the stream of tokens according to some formal grammar.

In this section, we describe several aspects that make the shell
language hard (and actually impossible in general) to parse using the
standard decomposition described above and more generally using the
standard parsing tools and techniques. These difficulties not only raise a
challenge in terms of programming but also in terms of reliability.

2.1. Non standard lexical conventions

2.1.1. Token recognition
In most programming languages, the categories of tokens are spe-

cified by means of regular expressions. As explained earlier, lexer
generators such as LEX conveniently turn such high-level specifications
into efficient finite state transducers, which makes the resulting im-
plementation both reliable and efficient.

The token recognition process for the shell language is described in
Section 2.3 of the specification [6], unfortunately without using any
regular expressions. Most languages use regular expressions with a
longest-match strategy to recognize the next token in the input
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“positively” that is, through the characters that compose the token. On
the contrary, the specification of the shell language is formulated in a
“negative way” by specifying the characters that are not in the tokens.
In other words, token recognition is based on a state machine that ex-
plains how tokens must be delimited in the input. Token recognition also
explains how these delimited chunks must be classified into two cate-
gories: words and operators.

The state machine that recognizes the tokens is unfortunately not a
finite automaton. It is almost as powerful as a pushdown automaton
since it must be able to recognize nested quotations. The complexity of
nesting we have to cope with here goes beyond what is known from
other languages like nested comments in Java, as one can see in the
following example.

Example 1 (Quotations). Consider the following input:

By the lexical conventions of most programming languages, the first
line would be decomposed as five distinct tokens (namely BAR, =,
’foo’, ”ba” and r). On the contrary, the lexical conventions of the
shell language considers the entire line BAR=’foo”’ba”r as a single
token, classified into the category of words. On the second line, the
input is split into the tokens X=0, echo and the token x$BAR”
”$(echo $(date)). Notice that the last token contains nested
quotations of the form $(.$(.)) the recognition of which is out of
the scope of regular finite state machines (without a stack).

2.1.2. Layout
The shell language also has some unconventional lexical conven-

tions regarding the interpretation of newline characters. In many lan-
guages, newline characters are simply ignored by the lexing phase since
they only serve as delimiters between tokens. In shell, however, new-
line characters are meaningful, and there are even four different in-
terpretations of a newline depending on the parsing context. Therefore,
most of the newline characters (but not all, as we shall see in the next
example) must be transmitted to the parser. Since a token is defined
negatively, that is by what may follow it instead of the longest match of
a regular expression, one can produce a token only after one has at least
started to read the following token. For this reason, the tokenizer must
be able to transmit to the parser a list of tokens, instead of a single token
at a time as it is common practice.

Example 2 (Interpretations of newline characters). The four
interpretations of the newline characters occur in the following
example:

On line 1, the newline character has a syntactic meaning because it acts
as a marker for the end of the sequence over which the for-loop is
iterating. On line 2, the newline character at the end of the comment
must not be ignored but is merged with the newline character of the
previous line. On line 3, the newline character is preceded by a
backslash. This sequence of characters is interpreted as a line-
continuation, which must be handled at the lexing level. That is, in
this case the newline is actually interpreted as layout. On lines 4 and 5,
each of the final newlines terminates a command.

The recognition of comments of shell scripts is also non conven-
tional. Even though the specification rule regarding comments seems
quite standard:

If the current character is a ’#’, it and all subsequent characters up
to, but excluding, the next ⟨newline⟩ shall be discarded as a com-
ment. The ⟨newline⟩ that ends the line is not considered part of the
comment.

The fact that ’#’ is not a delimiter allows a word to contain the
character ’#’, as in the following example.

Example 3.

In that example, !foo#bar! is recognized as a single word.

2.1.3. Character escaping
String literals of most programming languages may contain es-

caping sequences to let the programmer use the entire character set
including string delimiters themselves. The backslash character typi-
cally introduces such escaping sequence as in ”\”” to insert a double
quote or in ”\\” to insert a backslash. In these cases, the rule of es-
caping is pretty simple: if a character is preceded by a backslash, it must
retain its literal meaning.

In a static parser for POSIX shell, this rule is significantly more
complex because the nesting of double quotes and subshell invocations
have an impact on the number of backslashes needed to escape a
character, as shown by the following example.

Example 4 (Number of backslashes to escape).

On line 1, a subshell is nested inside a double-quoted string literal: in
the subshell invocation, the first occurrence of the character ’”” is not
escaped even though it is preceded by a backslash ; on the contrary, the
second occurrence of ’”” is escaped because it is preceded by two
backslashes.The command starting on line 2 illustrates the dependency
between the number of backslashes required to escape a character and
the nesting depth of subshell invocations.

2.1.4. Delimiting subshell invocations
From the lexical point of view, a subshell invocation is simply a

word. Delimiting these subshell invocations is hardly reducible to reg-
ular expression matching. Indeed, to determine the end of a subshell
invocation, it is necessary to recursively call the shell command parser
so that it consumes the rest of the input until a complete command is
parsed.

Example 5 (Finding closing parenthesis is difficult).

On this command, determining if the right parenthesis is ending the
subshell requires deciding if the parenthesis is escaped or not. However,
as explained in the previous section, this analysis is non trivial and
more or less requires to perform a complete lexical analysis of the input.

2.1.5. Here-documents
Here-documents are chunks of text embedded in a shell script, just

like string literals. Here-documents are commonly used to implement
some form of template-based generation of files (since they may contain
variables). However, their lexing is different from the one for strings.
For this reason, depending on the parsing context, the lexer must switch
to a special mode to deal with here-documents. To use that mode, the
user provides textual end-markers and the lexer then interprets all the
input up to an end-marker as a single token of the category of words.
The input characters are copied verbatim into the representation of the
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token, with the possible exception of quotations which may still be
recognized exactly as in the normal lexing mode. As a result, the lexer
has a dedicated structure which allows it to track the end-markers and
to interpret characters in a specific way, e.g., newline characters are not
interpreted at all whereas they have more complex interpretations in
the standard lexing mode. (See Section 2.1.2.)

Example 6 (Here-documents).

In this example, the text on lines 2 and 3 is interpreted as a single
word which is passed as input to the cat command. The first cat
command of line 4 is fed with the content of line 5 while the second
cat command of line 4 is fed with the content of line 7. This example
with two successive here-documents illustrates the non-locality of the
lexing process of here-documents: the word related to the end-marker
EOF1 is recognized several tokens after the introduction of EOF1. This
non-locality forces some form of forward declaration of tokens, the
contents of which is defined afterwards. Here-documents are merely
recognized as double-quoted words, except that double-quotes keep
their literal meaning.

To complete this description, notice that if the delimiter is quoted,
the here-document is processed as a literal surrounded by single quotes.

Example 7 (Here-documents).

This example evaluates into Hi $USER!.

2.2. Parsing-dependent lexical analysis

While the recognition of tokens is independent from the parsing
context, their classification into words, operators, newlines and end-of-
file markers must be refined further to obtain the tokens actually used
in the formal grammar specified by the standard. The declaration of
these tokens is reproduced in Fig. 1. While a chunk categorized as an
operator is easily transformed into a more specific token like AND_IF or
OR_IF, an input chunk categorized as a word can be promoted to a
reserved word or to an assignment word only under ad hoc conditions;
otherwise the word is not promoted and stays a WORD. This means that
the lexical analysis has to depend on the state of the parser. The fol-
lowing two sections describe this specific aspect of the shell syntax.

2.2.1. Parsing-sensitive assignment recognition
The promotion of a word to an assignment depends both on the

position of this word in the input and on the string representing that

word. The string must be of the form w=u where the substring w must be
a valid name, a lexical category defined in Section 3.2.35 of the stan-
dard by the following sentence:

[...] a word consisting solely of underscores, digits, and alphabetics
from the portable character set. The first character of a name is not a
digit.

Example 8 (Promotion of a word to an assignment).

On line 1, the word CC=gcc is recognized as a word assignment of
gcc to CC because CC is a valid name for a variable, and because
CC=gcc is written just before the command name of the simple com-
mand make. On line 2, the word CC=cc is not promoted to a word
assignment because it appears after the command name of a simple
command. On line 3, since ”./X” is not a valid name for a shell vari-
able, the word ”./X=1” is not promoted to a word assignment and is
interpreted as the command name of a simple command.

2.2.2. Parsing-sensitive keyword recognition
The Rule 1 of the Shell Grammar Rules described in Section 2.10.2

of the standard demands that a word is promoted to a reserved word if
the parser state is expecting this reserved word at the current point of
the input. If a word that is a potential reserved word is located where a
reserved word is not expected, it is not promoted and interpreted as any
other word.

Example 9 (Promotion of a word to a reserved word).

In that example, the first occurrence of do as well as the words between
the first occurrence of in and the first semicolon are not promoted to
reserved words while the other occurrences of for, do, in and done
are.

In addition to this promotion rule, some reserved words can never
appear in the position of a command. This is therefore an exception to
the previous rule.

Example 10 (Forbidden position for specific reserved words).

The word else must be recognized as a reserved word and the parser
must reject this input.

To complete the picture, the grammar given in the POSIX standard
does not define completely the shell language. In addition to the rules,
the parser must also take into account constraints as expressed in the
“note” in the description of Rule 1 given in Section 2.10.2 of the
standard:

This rule also implies that reserved words are not recognized except
in certain positions in the input, such as after a ⟨newline⟩ or
⟨semicolon⟩; the grammar presumes that if the reserved word is
intended, it is properly delimited by the user, and does not attempt
to reflect that requirement directly.

Example 11 (The grammar is too flexible). The following program is
valid if we follow solely the grammar:

but it must be rejected because then and fi are not “properly delimited”
by the user.

Fig. 1. The tokens of the shell language grammar.

Y. Régis-Gianas, et al. Journal of Computer Languages 57 (2020) 100944

4



2.2.3. Richly structured semantic values
The semantic value of a word can be complex since it can be made

of subshell invocations, variables and literals. As a consequence, even
though the grammar considers a word as an atomic piece of lexical
information, its semantic value is represented by a dedicated concrete
syntax tree.

Example 12 (A word can have many components).

This script is a single word read as an ASSIGNMENT_WORD by the
grammar. The right-hand-side of this assignment is a sequence starting
with a so-called “tilde-prefix”, followed by a double-quoted sequence
followed by a literal. The double-quoted sequence is itself composed of
a subshell invocation represented by the concrete syntax tree of its
command, followed by a variable that uses the default value bar when
expanded. The double-quoted word is completed with a literal baz, a
bracket range expression and pattern-matching operator matching all
words.

2.3. Evaluation-dependent lexical analysis

The lexical analysis also depends on the evaluation of the shell
script. Indeed, the alias builtin command of the POSIX shell amounts
to the dynamic definition of macros that are expanded just before lex-
ical analysis. Therefore, even the lexical analysis of a shell script cannot
be done without executing it, that is, lexical analysis of unrestricted
shell scripts is undecidable. Fortunately, restricting the usage of the
alias command to top level commands only (that is, outside of any
control structure) and performing expansion of these aliases on the fly
while parsing allows us to implement a simple form of alias expansion
without compromising decidability. This simple strategy is sufficient to
parse the 31,330 POSIX shell scripts in the corpus of Debian maintainer
scripts (see Section 4.3), which contained anyway only 2 occurrences of
the alias command.

Example 13 (Lexical analysis is undecidable).

To decide if for in line 6 is a reserved word, a lexer must be able to
know the success of an arbitrary program ./foo, which is impossible to
do statically. Hence, the lexer must wait for the evaluation of the first
command before parsing the second one.

Example 14 (Tractable usage of alias).

If the shell script only uses alias at the top level, the parser can
maintain a table for aliases and apply on-the-fly a substitution of aliases
by their definitions just before the lexical analysis. Notice that this
substitution introduces a desynchronization between the positions of
tokens in the lexing buffer and their actual positions in the source code:
this complicates the generation of precise locations in error messages.

Example 15 (Non standard semantics of alias expansion). In the following
example, notice that the right-hand-side of the alias definition ends
with a space:

This space affects the semantics of alias expansion by enabling an
expansion chain: in that case, the alias expansion applies not only to the
command name but also to every word that follows it as long as this
word is itself subject to alias expansion. As a consequence, after alias
expansion, this script is rewritten as:

This mechanism forces the parser to maintain a state to determine if the
alias expander has triggered such a chain of alias expansions.

Another problematic feature of the shell language is eval. This
builtin constructs a command by concatenating its arguments, sepa-
rated by spaces, and then executes the constructed command in the
shell. In other words, the construction of the command that will be
executed depends on the execution of the script, and hence cannot be
statically known by the parser.

Fig. 2. A fragment of the official grammar for the shell language.
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2.4. Ambiguous grammar

The grammar of the shell language is given in Section 2.10 of the
standard. Due to lack of space we only reproduce a fragment of it in
Fig. 2. At first sight, the specification seems to be written in the input
format of the YACC parser generator. However, YACC cannot handle this
specification as-is because the specification is annotated with nine
special rules that are not directly expressible in terms of YACC’s parsing
mechanisms. In a previous version of the standard [8], the grammar
also contained LR(1) conflicts. These conflicts have fortunately been
fixed in the latest POSIX specification.

2.4.1. Special rules
The nine special rules of the grammar are actually the place where

the parsing-dependent lexical conventions are explained. We briefly
review all the rules and explain their implications.

Rule 1 We already discussed Rule 1 about promotion to reserved
words in Section 2.2.2.

Rule 2 This rule restricts the words that can be used as the target
filename for a redirection. This restriction is related to the expansion of
this word, hence it is a semantic criterion that should not be tackled at
parsing stage as far as we understand it.

Rule 3 This rule is expressed as follows:

[Redirection from here-document]
Quote removal shall be applied to the word to determine the deli-
miter that is used to find the end of the here-document that begins
after the next ⟨newline⟩.

This rule has an impact on the lexing of here-documents as it defines
how the end marker of an here-document must be built from the word
producing the non terminal end_here. If the quote removal of this
word is not the identity (i.e. if the word is quoted), the lexing of the
here-document is similar to a word enclosed between single quotes.
Otherwise, the lexing is similar to a word enclosed between double
quotes.

Rule 4 Here is an excerpt from the standard describing Rule 4:

[Case statement termination]
When the TOKEN is exactly the reserved word esac, the token
identifier for esac shall result. Otherwise, the token WORD shall be
returned.

The grammar refers to that rule in the following case:

Roughly speaking, this annotation says that when the parser is re-
cognizing a pattern and when the next token is the specific WORD
esac, then the next token is actually not a WORD but the token Esac. In
that situation, one can imagine that an LR parser must pop up its stack
to a state where it is recognizing the non terminal case_clause de-
fined as follows:

to conclude the recognition of the current case_list.
Rule 5 This rule annotates the following grammar rules:

Lexically speaking, the tokens of the form NAME are a subset of the
words. Therefore, the lexical analysis cannot produce NAMEs as it al-
ready produces WORDs. Rule 5 can be seen as a parsing-dependent
lexical rule embedded in the grammar whose role is to reinterpret a
token WORD as a NAME in appropriate parsing contexts (here, after a
for):

[NAME in for]
When the TOKEN meets the requirements for a name (see XBD Name),
the token identifier NAME shall result. Otherwise, the token WORD shall

Fig. 3. Parse tree for CC=gcc make all | grep ’error’.
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be returned.

Rule 6 This rule is expressed as follows in the standard:

[Third word of for and case]
[case only] When the TOKEN is exactly the reserved word in, the token
identifier for in shall result. Otherwise, the token WORD shall be re-
turned.
[for only] When the TOKEN is exactly the reserved word in or do, the
token identifier for in or do shall result, respectively. Otherwise, the token
WORD shall be returned.
(For a. and b.: As indicated in the grammar, a linebreak precedes the
tokens in and do. If ⟨newline⟩ characters are present at the indicated
location, it is the token after them that is treated in this fashion.

This rule defines cases where the keywords in and do are properly
located in the input, even though that may not be properly delimited by
a semicolon or a linebreak.

Rule 7 This rule is similar to the Rule 5 except that it focuses on the
valid promotion of a word to an assignment word.

Rule 8 This rule restricts the valid names for function identifiers to
exclude reserved words.

Rule 9 This rule states that the function bodies are not subject to
expansion and assignment. Like Rule 2, we consider this rule to be
related to semantics, not parsing.

2.4.2. LR(1) Conflicts
Our LR(1) parser generator has detected five shift/reduce conflicts

in the YACC grammar of a previous version of the standard [8]. Even
though these conflicts are now fixed in the latest specification of POSIX
shell, we keep the description of these conflicts for the sake of history
and since it can still help shell implementers.

All these conflicts are related to the analysis of newline characters in
the body of case items in case analysis. Indeed, the grammar is not LR
(1) with respect to the handling of these newline characters. Here is the
fragment of the grammar that is responsible for these conflicts:

When a NEWLINE is encountered after term in a context of the
following form:

an LR parser cannot choose between reducing the term into a com-
pound_list or shifting the NEWLINE to start the recognition of the
final separator of the current compound_list.

Fortunately, as the newline character has no semantic meaning in
the shell language, choosing between reduction or shift has no sig-
nificant impact on the output parse tree.

3. Unorthodox parsing

Our parser library is designed for a variety of applications, including
statistical analysis of the concrete syntax of scripts (see, for instance,
Section 4.3). Therefore, contrary to parsers typically found in compilers
or interpreters, our parser does not produce an abstract syntax tree from
a syntactically correct source but a parse tree instead. A parse tree, or
concrete syntax tree, is a tree whose nodes are grammar rule applica-
tions. Because we need concrete syntax trees (and also, as we shall see,
because we want high assurance about the compliance of the parser
with respect to the POSIX standard), reusing an existing parser

implementation was not an option, as said in the introduction. Our
research project required the reimplementation of a static parser from
scratch.

Before entering the discussion about implementation choices, let us
sum up a list of the main requirements that are implied by the technical
difficulties explained in Section 2:

1. lexical analysis must be aware of the parsing context and of some
contextual information like the nesting of double quotes and sub-
shell invocations;

2. lexical analysis must be defined in terms of token delimitations, not
in terms of token (regular) languages recognition;

3. the syntactic analysis must be able to return the longest syntactically
valid prefix of the input;

4. the parser must be reentrant;
5. the parser must forbid certain specific applications of the grammar

production rules; and
6. the parser must be able to switch between the token recognition

process and the here-document scanner.

In addition to these technical requirements, there is an extra
methodological one: the mapping between the POSIX specification and
the source code must be as direct as possible.

The tight interaction between the lexer and the parser prevents us
from writing our syntactic analyzer following the traditional design
found in most textbooks [9], that is a pipeline of a lexer followed by a
parser. Hence, we cannot use either the standard interfaces of code
generated by LEX and YACC, because these interfaces have been designed
to fit this traditional design. There exist alternative parsing technolo-
gies, e.g. scannerless generalized LR parsers or topdown general parsing
combinators, that could have offered elegant answers to many of the
requirements enumerated previously, but as we will explain in
Section 7, we believe that none of them fulfills the entire list of these
requirements.

In this situation, one could give up using code generators and fall
back to the implementation of a hand-written character-level parser.
This is done in DASH for instance: the parser of DASH 0.5.7 is made of 1569
hand-crafted lines of C code. This parser is hard to understand because
it is implemented by low-level mechanisms that are difficult to relate to
the high-level specification of the POSIX standard: for example, lexing
functions are implemented by means of gotos and complex character-
level manipulations; the parsing state is encoded using activation and
deactivation of bit fields in one global variable; some speculative par-
sing is done by allowing the parser to read the input tokens several
times, etc.

Other implementations, like the parser of BASH, are based on a YACC

grammar extended with some code to work around the specificities of
shell parsing. We follow the same approach except on two important
points. First, we are stricter than BASH with respect to the POSIX stan-
dard: while BASH is using an entirely different grammar from the stan-
dard, we literally cut-and-paste the grammar rules of the standard into
our implementation to prevent any change in the recognized language.
Second, in BASH, the amount of hand-written code that is accompanying
the YACC grammar is far from being negligible. Indeed, we counted ap-
proximately 5000 extra lines of C to handle the shell syntactic pecu-
liarities. In comparison, our implementation only needed approxi-
mately 10003 lines of OCAML to deal with them.

Of course, these numbers should be taken with some precaution
since OCAML has a higher abstraction level than C, and since BASH im-
plements a significant extension of the shell language. Nonetheless, we
believe that our design choices greatly help in reducing the amount of
ad hoc code accompanying the YACC grammar of the POSIX standard.

3 The total number of lines of code is 2622, including type definitions, utilities
and infrastructure.
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The next sections try to give a glimpse of the key aspects of our parser
implementation.

3.1. A modular architecture

Our main design choice is not to give up on modularity. As shown in
Fig. 4, the architecture of our syntactic analyzer is similar to the
common architecture found in textbooks as we clearly separate the
lexing phase and the parsing phase in two distinct modules with clear
interfaces. Let us now describe the original aspects of this architecture.

As suggested by the illustration, we decompose lexing into two
distinct subphases. The first phase called “prelexing” is implementing
the “token recognition” process of the POSIX standard. As said earlier,
this parsing-independent step classifies the input characters into three
categories of “pretokens”: operators, words and potentially significant
layout characters (newline characters and end-of-input markers). This
module is implemented using OCAMLLEX, a lexer generator distributed
with the OCAML language. In Section 3.2, we explain which features of
this generator we use to get a high-level implementation of lexical
conventions close to the informal description of the specification.

The second phase of lexing is parsing-dependent. As a consequence,
a bidirectional communication between the lexer and the parser is
needed. On one side, the parser is waiting for a stream of tokens to
reconstruct a parse tree. On the other side, the lexer needs some parsing
context to promote words to keywords or to assignment words, to
switch to the lexing mode for here-documents, and to discriminate
between the four interpretations of the newline character (see
Example 2), etc. We manage to implement all these ad hoc behaviors
using speculative parsing, which is easily implemented thanks to the
incremental and purely functional interface produced by the parser
generator MENHIR [10]. This technique is described in Section 3.3.

3.2. Mutually recursive parametric lexers

The lexer generators of the LEX family are standard tools which
compile an ordered list of regular expressions into an efficient finite
state machine. When a specific regular expression is matched, the
generated code triggers the execution of some piece of user-written
code. In theory, there is no limitation on the computational expres-
siveness of lexers generated by LEX since any side-effect on the lexing

engine may be performed in the arbitrary code attached to each regular
expression. In practice, though, it can be difficult to develop complex
lexical analyzers with LEX especially when several sublexers must be
composed to recognize a single token that is the concatenation of sev-
eral words of distinct nature (like the word $BAR” ”$(echo $(date))

we encountered earlier) or when they have to deal with nested con-
structions (like the parenthesized quotations of the shell language, for
instance).

OCAMLLEX is the lexer generator of the OCAML programming language.
OCAMLLEX extends the specification language of LEX with many features,
two of which are exploited in our implementation. First, in OCAMLLEX, a
lexer can be defined by a set of mutually recursive entry points. This
way, even if a word can be recognized as a concatenation of words from
distinct sublanguages, we are not forced to define these sublanguages in
the same pattern matching: on the contrary, each category can have a
different entry point in the lexer which leads to modular and readable
code. Thanks to this organization of the lexical rules, we were able to
separate the lexer into a set of entry points where each entry point
refers to a specific part of the POSIX standard. This structure of the
source code eases documentation and code reviewing, hence it in-
creases its reliability. Second, each entry point of the lexer can be
parameterized by one or more arguments. These arguments are typi-
cally used to have the lexer track contextual information along the
recognition process. Combined with recursion, these arguments provide
to lexers the same expressiveness as deterministic pushdown automata.
This extra expressive power of the language allows our lexer to parse
nested structures (e.g. parenthesized quotations) even if they are not
regular languages. In addition, the parameters of the lexer entry points
make it possible for several lexical rules to be factorized out in a single
entry point. Last but not least, the prelexer context is flexible enough to
maintain the word-level concrete syntax trees mentioned in
Section 2.2.3 (we come back on this aspect in Section 3.4.1).

3.3. Incremental and purely functional parsing

YACC-generated parsers usually provide an all-or-nothing interface:
when they are run, they either succeed and produce a semantic value,
or they fail if a syntax error is detected. Once invoked, these parsers
take control and do not give it back unless they have finished their
computation. During its execution, a parser calls its lexer to get the next
token but the parser does not transmit any information during that call
since the lexer is usually independent from parsing.

As we have seen, in the case of the shell language, when the lexer
needs to know if a word must be promoted to a keyword or not, it must
inspect the parser context to determine if this keyword is an acceptable
token at the current position of the input. Therefore, the conventional
calling protocol of lexers from parsers is not adapted to this situation.

Fortunately, the MENHIR [10] parser generator has been recently
extended to produce an incremental interface instead of the conven-
tional all-or-nothing interface. In that new setting, the caller of a parser
must manually provide the input information needed by this parser for
its next step of execution and the parser gives back the control to its
caller after the execution of this single step. Hence, the caller can im-
plement a specific communication protocol between the lexer and the
parser. In particular, the state of the parser can be transmitted to the
lexer. This protocol between the incremental parser generated by MENHIR

and the parsing engine is specified by a single type definition:

A value of type ’a checkpoint represents the entire immutable
state of the parser generated by MENHIR. The type parameter ’a is the
type of semantic values produced by a successful parsing. The type ’a
env is the internal state of the parser which, roughly speaking, contains

Fig. 4. Architectures of syntactic analyzers: at the top of the figure, the stan-
dard pipeline commonly found in compilers and interpreters; at the bottom of
the figure, the architecture of our parser in which there is a bidirectional
communication between the lexer and the parser.
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the stack and the current state of the generated LR pushdown auto-
maton. As specified by this sum type, there are six situations where the
incremental parser generated by MENHIR interrupts itself to give the
control back to the parsing engine:

• InputNeeded means that the parser is waiting for the next token.
By giving back the control to the parsing engine and by exposing a
parsing state of type ’a env, the lexer has the opportunity to inspect
this parsing state and decide which token to transmit. This is the
property we exploit to implement the parsing-dependent lexical
analysis. (See accepted_tokenin Section 3.3.1.)

• AboutToReduce is returned just before a reduceaction. We exploit
this checkpoint to implement a specific aspect of the treatment of
reserved words. (See Section 3.3.1.)

• Accepted is returned when a complete command has been re-
cognized. In that case, if we are not at the end of the input file, we
reiterate the parsing process on the remaining input.

• Rejected is returned when a syntax error has not been recovered
by any handler. This parsing process stops on an error message.

• Shifting is returned by the generated parser just before a shift
action. HandlingError is returned when a syntax error has just
been detected. We do not exploit these particular checkpoints.

Now that the lexer has access to the state of the parser, how can it
exploit this state? Must it go into the internals of LR parsing to decipher
the meaning of the stack of the pushdown automaton?

Actually, a far simpler answer can often be implemented: the lexer
can simply perform some speculative parsing to observationally deduce
information about the parsing state. In other words, to determine if a
token is compatible with the current parsing state, the lexer just exe-
cutes the parser with the considered token to check whether it produces
a syntax error, or not. If a syntax error is raised, the lexer backtracks to
the parsing state that was just active before the speculative parsing
execution.

If the parsing engine of MENHIR were imperative, then the back-
tracking process required to implement speculative parsing would ne-
cessitate some machinery to undo parsing side-effects. Since the parsing
engine of MENHIR is purely functional we do not need such a machinery:
the state of the parser is an explicit immutable value passed to the
parsing engine which returns in exchange a fresh new parsing state
without modifying the input state. The API to interact with the gener-
ated parser is restricted to only two functions:

The function offer is used when the checkpoint is of the
form InputNeeded. In that specific case, the argument is a triple of
type token * position * position passed to the generated parser.

The function resume is used for the other cases to give the control
back to the generated parser without transmitting any new input token.

From the programming point of view, backtracking is as cheap as
declaring a variable to hold the state to recover it if a speculative
parsing goes wrong. From the computational point of view, thanks to

sharing, the overhead in terms of space is negligible and the overhead
in terms of time is reasonable since we never transmit more than one
input token to the parser when we perform such speculative parsing.

Another essential advantage of immutable parsing states is the fact
that the parsers generated by MENHIR are reentrant by construction. As a
consequence, multiple instances of our parser can be running at the
same time. This property is needed because the prelexer can trigger new
instances of the parser to deal with subshell invocations.

Notice that the parsing of subshell invocations are not terminated by
a standard end-of-file marker: indeed, they are usually stopped by the
closing delimiter of the subshell invocation. For instance, parsing

echo $(date ”+%Y%m%d” requires a subparser to be executed after
$(and to stop before).

As it is very hard to delimit correctly subshell invocation without
parsing their content, this subparser is provided the entire input suffix
and it is responsible for finding the end of this subshell invocation by
itself.

The input suffix is never syntactically correct. Thus, when a sub-
parser encounters the closing delimiter (the closing parenthesis in our
example), it will produce a syntax error.

To tackle this issue, our parser can be run in a special mode named
“longest valid prefix”. In that mode, the parser returns the longest
prefix of the input that is a valid complete command. This feature is
similar to backtracking and is as easy as implement thanks to im-
mutable parsing states.

3.3.1. Recognizing reserved words
In this section, we describe our technique to handle the promotion

of words to reserved words in a parsing-context sensitive way as well as
the handling of promoted words which generate syntax errors. As ex-
plained earlier, this technique intensively uses the fact that the parser
generated by MENHIR is incremental and purely functional.

Let us first show the code of the function which decides whether to
promote a word into a reserved word:

This function takes a boolean well_delimited that is true if the
context is sufficient to delimit a keyword, a checkpoint corresponding

to the current state of the parser, some positions pstart and pstop as
well as a string w. The function valid_token is a predicate that ac-
cepts a keyword kwd if it is compatible with the current parsing state
and if it is well delimited. Then, line 7 declares that this function is in
the FirstSuccessMonad, the details of which are not important
here 4: it simply allows us to first try to promote w as a keyword if it is

4 Technically, this monad is the Maybe monad with a left-biaised choice op-
erator.
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indeed a valid keyword, or else turn it into a name if it is a valid name.
Otherwise, this computation fails.

The definition of accepted_token is:

If the parser is in a state where an input is needed we offer it the
token. The resulting new checkpoint is passed to the following recursive
function close to determine if a syntax error is detected by the parser:

Notice that this function always terminates since the recursive call
to close is done just before a reduction which always consumes some
entries at the top of the pushdown automaton stack.

This speculative parsing solves the problem of reserved words only
partially. Indeed, if a keyword is used where a cmd_word or a
cmd_name is expected, that is as the command of a simple_command,
it must be recognized as a reserved word even though it generates a
syntax error.

Therefore, the function recognize_reserved_word_i-
f_relevant is counterproductive in that case because it will prevent
the considered word from being promoted to a reserved word and
would fail to detect the expected syntax error. Thanks to the

AboutToReduce case, we are able to detect a posteriori that a word,
which has not been promoted to a reserved word, has been used to
produce a cmd_word or a cmd_name:

Fig. 5. The concrete syntax trees for words.

Fig. 6. Grammar for bracket regular expressions.
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Let us explain this code. First, it is a pattern-matching branch for the
case AboutToReduce. Conceptually, the argument named env re-
presents the stack of the LR pushdown automaton and the argument
named production is a descriptor for the reduction that is about to
happen. On Line 4 we first check that this production is indeed a rule
whose left-hand-side (the produced nonterminal) is either a cmd_name
or a cmd_word by calling is_cmd. In that case, top_is_keyword
extracts the topmost element of the automaton stack: it must be a token
NAME or WORD. We just have to check that the semantic values of these
tokens are not reserved words to determine if a syntax error must be
raised.

3.4. Parsing of words

As explained in Section 2.2.3, even though words are tokens from
the perspective of the POSIX shell grammar, words also have an internal

syntactic structure of their own. Therefore, words cannot simply be
represented by strings. Morbig enriches the signature of the concrete
syntax trees of the shell language grammar with a sublanguage for
words as specified by the datatype definition of Fig. 5.

The construction of this specific concrete syntax trees for words
significantly increases the complexity of the parser for two reasons: (i)
these syntax trees must be built along the lexical analysis (this is not
standard since lexical analysis usually produces a sequence of tokens,
not syntax trees) ; and (ii) the sub-language of regular bracket expres-
sions requires an LR parser whose grammar specification is given in a
dedicated section of the POSIX standard (namely Section 9.3.5).

3.4.1. Production of word concrete syntax trees by the prelexer
To attach concrete syntax trees to words, the prelexer maintains a

stack of concrete syntax trees of type word_component as defined in

Fig. 5. A dedicated module named PrelexerState provides the op-
erations to incrementally build syntax trees, possibly one character at a
time.

For instance, if a (non quoted) double quote is scanned, the prelexer
state enters a mode where all subsequent characters are stored in a
buffer until the closing double quotes is reached. At this point, the
contents w of the buffer is used to construct a word concrete syntax tree
of the form WordDoubleQuoted w. Notice that the buffer may recur-
sively contain other words, as in the word ”$X‘date‘” where a
WordVariable and a WordSubshell are contained by the
WordDoubleQuoted.

During our tests, we found many shell scripts with large literals (e.g.
binaries embedded in scripts as here-documents). To deal with them,
we optimized the data structure used for bufferization for the case of
long sequences of character insertions.

3.4.2. LR Parser dedicated to bracket regular expressions
Bracket Regular Expressions like [a-z] or [!A–] are specified by a

grammar given in the YACC format, reproduced in Fig. 6.
There are no specific annotations of the rule as in the grammar for

the shell language, which simplifies its interpretation. However, our
tool detected one shift/reduce conflict in that grammar:

Table 1
Comparison of MORBIG and DASH on the whole corpus from Software Heritage.
The percentages are in function of the total number of scripts.

MORBIGDASH All Accepted Rejected

All 7,436,215 (100%) 5,981,054 (80%) 1,455,161 (20%)
Accepted 5,609,366 (75%) 5,607,331 (75%) 2035 ( < 1%)
Rejected 1,826,849 (25%) 373,723 (5%) 1,453,126 (20%)
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The conflict comes from the fact that the LR(1) parser does not
know if a MINUS terminates an end_range or not. The sensible choice
is the second part of this alternative which amounts to prefer shift over
reduce.

Just like with the shell language, the lexical analysis of bracket
regular expressions is parsing dependent: typically, the syntactic in-
terpretation of the character ’-’ varies. In [!A–], the first occurrence of
dash is a token used by the grammar to separate the start and the end of
a range, while the second occurrence must be recognized as a token
named COLL_ELEM_SINGLE, which includes all characters that can be
matched by bracket regular expression. Morbig again makes use of an

incremental parser generated by Menhir to deal with this parsing-de-
pendent tokenization as with the global grammar of POSIX shell.

3.5. From the code to the POSIX specification

What makes us believe that our approach to implement the POSIX
standard will lead to a parser that can be trusted? Actually, as the
specification is informal, it is impossible to prove our code formally
correct. We actually do not even claim the absence of bugs in our im-
plementation: this code is far too immature to believe that.

To improve our chance to converge to a trustworthy implementa-
tion, MORBIG development follows several guidelines: (i) its code is

Fig. 7. OCaml API.
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written in such a way that it facilitates code review; (ii) it includes the
formal shell grammar of the POSIX as-is; (iii) it is tested on a hand-
written testsuite that contains many cornercases and on a large testsuite
of real-world scripts; and (iv) it seems to behave like POSIX-compliant
shells.

Code review
Comments represent almost 20% of the MORBIG source code. We tried

to quote the POSIX specification related to each code fragment so that a
code reviewer can evaluate the adequacy between the implementation
and its interpretation of the specification. We also document every
implementation choice we make and we explain the programming
technique used to ease the understanding of the unorthodox parts of the
program, typically the speculative parsing.

Cut-and-paste of the official shell grammar

We commit ourselves to not modifying the official BNF of the
grammar despite its incompleteness or the exotic nine side rules de-
scribed earlier. BNF is the most declarative and formal part of the
specification, knowing that our generated parser recognizes the same
language as this BNF argues in favor of trusting our implementation.

Testsuite
MORBIG comes with a testsuite which follows the same structure as

the specification: for every section of the POSIX standard, we have a
directory containing the tests related to that section. At this time, the
testsuite is relatively small since it contains just 177 tests. A code re-
viewer may still be interested by this testsuite to quickly know if some
cornercase of the specification has been tested and, if not, to contribute
to the testsuite by the addition of a test for this cornercase.

Comparison to existing shell implementations
To disambiguate several paragraphs of the standard, we have

checked that the behavior of MORBIG coincides with the behavior of shell
implementation which are believed to be POSIX-compliant, typically
DASH and BASH (in POSIX mode).

More importantly, we ran both MORBIG and DASH on all the files de-
tected as shell scripts by libmagic5 in the Software Heritage [7] ar-
chive. This archive contains all the scripts in GitHub, and more, for a
total of 7,436,215 files. Table 1 shows general numbers about what
both parsers accept or reject in this archive. On most scripts (95%),
MORBIG and DASH do agree. It is interesting to consider the cases where
they disagree, because this is where one can find bugs in one parser or
the other.

Out of the scripts accepted by Dash and rejected by Morbig the
majority (350,259, ie. 94% and 4.7% of the total) contains BASH-specific
constructs in words. DASH, in parse-only mode, separates words but does
not look into them, hence it will only refuse them when executing the
script. MORBIG, on the other hand, does parse words and rejects such
scripts. This is neither a bug in DASH nor in MORBIG as the POSIX standard
does not specify whether such invalid words must be rejected during
parsing or during execution. The remaining 23,464 (0.3% of the corpus)
that are accepted by DASH and rejected by MORBIG are due to remaining
bugs in MORBIG or in DASH.

There are only 0.03% of scripts which are accepted by MORBIG and
refused by DASH. These are either due to bugs in MORBIG, or in DASH, or to
the fact that the standard is ambiguous.

4. Applications

4.1. Shell parsing toolkit

There are two interfaces to the MORBIG parser: a Command Line
Interface (CLI) and an Application Programming Interface (API).

Command line interface The CLI of MORBIG is an executable program
called morbig. It takes as input a list of filenames and can as an option
produce, for each syntactically correct input file, a file containing a
representation of its concrete syntax tree. The available output formats
are a binary format that is very efficient in space and time consumption,
a complete JSON text format including information about localization
in the input file, and a simplified JSON format without localization in-
formation.

OCaml API
To use the OCaml API of MORBIG, a programmer writes an OCAML

program linked to the morbig library. The part of the API concerning
parsing, signalization and extraction of information from concrete
syntax trees, is kept simple (see Fig. 7).

The API is richer when it comes to analyzing and transforming
concrete syntax trees. Indeed, in addition to the type definitions for the
concrete syntax trees, the module CST defines several classes of visitors.
The visitor design pattern [11] is an object-oriented programming

Fig. 9. Morsmall’s AST.

5 libmagic is a standard library to detect file formats with heuristics.
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technique to define a computation over one or several mutually re-
cursive object hierarchies. The next section explains the advantages of
defining an analysis with such visitors. In the API, six classes of visitors
are provided: iter to traverse a CST, map to transform a CST into
another CST, reduce to compute a value by a bottom-up recursive
computation on a CST, as well as iter2, map2 and reduce2 which
traverse two input CSTs of similar shapes at the same time. These
visitors come for free as we use a preprocessor [12,13] which auto-
matically generates visitors classes out of type definitions.

C API
Like most general purpose languages, the OCaml language provides

an interoperability interface with the C language6 Morbig exploits this

interoperability layer to offer a programmable interface for C programs.
Therefore, the morbig library can be seen as a basic C library, and can
also be used from any programming language that is able to interact
with C.

In OCaml, concrete syntax trees are represented by values of alge-
braic datatypes, with each non-terminal of the shell grammar corre-
sponding to a different type and each grammar rule being representing
by a data constructor. As a consequence, static typing guarantees that
concrete trees are made of valid applications of grammar rules.

Even though there are unfortunately no such rich types in C, these
guarantees also hold about the C values of type cst_t7 Indeed, the type

Fig. 8. An excerpt of the C API of Morbig library.

6 As documented at http://caml.inria.fr/pub/docs/manual-ocaml/intfc.html.

7 We assume that the programmer does not cast this type in order to break
abstraction.
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cst_t is abstract and the API only provides functions that extract in-
formation from concrete syntax trees.

It is the OCaml runtime that takes care of the memory management
of these values through the OCaml garbage collector. A function call of
the form dispose_cst(t) informs the OCaml runtime that the C
program does not need the concrete syntax tree t anymore. As usual in
C, the programmer is responsible for assuring that this is indeed the
case.

4.2. An abstract syntax tree for POSIX shell

For many applications (e.g. an interpreter), a concrete syntax tree
contains too much information. For instance, it is often not interesting
to know whether two commands are separated by a semicolon or a
newline and, in that case, how many newlines there are. The objective
of an abstract syntax tree (AST) is to abstract away from such informa-
tion.

In several cases, the POSIX grammar allows some part of a script to
be omitted and implicitly replaced by a default value. For instance, in
redirections, specifying the precise IO_NUMBER to be redirected to is
not mandatory. If it is not specified, then a default value is used, like 1
in case of an output redirection. In that case, we only need to know
which IO_NUMBER is used, independently of whether this value was
explicitly specified or whether the default value was filled in.

It is also interesting to notice that some constructions in the CST are
semantically equivalent. For instance, adding braces around a portion
of a shell script does not change its semantics in any way. Thus, this
construction will not be represented in the AST.

We developed a tool called MORSMALL that defines an AST for POSIX
shell as well as a conversion from MORBIG’s CST. The complete definition
of its AST can be found in Fig. 9. Some parts like the type word_-
component are very similar to what can be found in MORBIG. Some other
parts are much more abstract. The type command alone regroups 21
types from the CST. In total, there are only 16 types in the AST while
there are 117 types in the CST.

4.3. An analyzer for debian maintainer scripts

The original motivation for the MORBIG parser comes from a research
project on the development of formal methods for the verification of the
so-called maintainer scripts present in the Debian GNU/Linux distribu-
tion. As a first step of this project, we needed a statistical analysis of our
corpus of POSIX shell scripts in order to know what elements of the
shell language and what UNIX commands with which options are
mostly used in our corpus.

Already the apparently simple problem of counting the occurrences
of control structures in a corpus of shell scripts goes beyond what can be
done by counting the matches of some regular expression, due to the
fact that words are keywords, and hence may mark the start of a control
structure, only when they appear in a context where a keyword is ex-
pected (see the discussion in Section 2.2.2). Our analyzer works on the
concrete syntax trees produced by MORBIG. Individual analyzers are
written using the visitors provided by the shell parsing toolkit (see
Section 4.1). For instance, the essential parts of an analyzer which
counts the number of parameters in a script is shown in Fig. 10. This
again is more difficult than just counting the number of occurrences of
the character $ in the corpus since we have to exclude occurrences of
the symbol in comments and here-documents in case they are protected
from variable expansion. To demonstrate the use of an environment of
the visitors we have refined our analysis further to exclude parameters
that are set in an enclosing for loop for which the wordlist, that is the list
of values over which the loop iterates, is not subject to shell expansion
and hence is statically known.

4.4. A user-extensible LINT for POSIX shell

The historical lint utility, which was created by Bell Labs in 1979,
is a static analyzer for C programs which gives programmers feedback

Fig. 10. Counting variables that are not set by a for-loop.

Fig. 11. A lintshell plugin to detect invalid quoting of find patterns.
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about potential problems in their code. A similar tool exists today for
shell scripts: SHELLCHECK is a HASKELL program that parses shell scripts and
generates warnings on the fly when it encounters bad shell program-
ming patterns. The number of patterns recognized by SHELLCHECK is im-
pressive, but its architecture makes it difficult to extend with new
patterns. Indeed, no syntax tree is actually produced by SHELLCHECK, so
the detection of a new pattern must be introduced in the parser itself,
which is of course quite complex.

We started the development of a new lint-like tool for shell scripts
which offers a plugin system to allow any OCAML programmer to in-
troduce a new shell script analyzer in the tool. This tool is based on the
morbig and morsmall libraries, this way a user has access to the API
described in Section 4.1. An analysis can therefore be written concisely
using visitors just like the analyzers of shell scripts described in
Section 4.3. But, given the specificity of lint analyzers, we were also
able to design a combinator library that allows for high-level and de-
clarative definitions of many of these analyzers.

To get a glimpse of lintshell plugin programming, consider the
code of Fig. 11. This code is the whole definition of a plugin which
detects if a script invokes the find command without quoting its argu-
ments which are find patterns. From Line 3 to Line 6, the user provides
some metadata about the plugin (its name, author, and some user
documentation).

The most interesting part is the definition of the analyzer which
starts on Line 17. An analyzer could be seen as a function from concrete
syntax trees of scripts to alarms. We decided, however, to provide an
Embedded Domain Specific Language (EDSL) to help with the im-
plementation of such functions. A program in our EDSL defines criteria
that must trigger alarms. The combinators to build analyzers using this
DSL allow us to quantify over specific syntactic constructions of the
shell language (like the for_all_command of Line 17), and they also
allow to provide common predicates over these syntactic constructions
(like the is_not_quoted_word of Line 21). We found that the EDSL
enhances the readability of plugins code and therefore simplifies the
review, the maintenance and the evolution of these scripts.

In addition, plugins written using this EDSL compose well: lint-
shell can factorize their applications into a single traversal of the
syntax trees. On the contrary, each plugin written with a visitor or as
bare OCaml function of type program -> alarm list costs one tra-
versal of the syntax trees. Of course, an EDSL has a limited expressivity
and it is sometimes necessary to fall back to these more expensive ways
of implementing analysis for more complex analysis.

5. Current limitations and future work

An important issue is how to validate our parser. The testsuite
presented in Section 3.5 is only a partial answer to this problem. In-
deed, counting the number of scripts that are recognized as being
syntactically correct or incorrect is only a first step to validate our
parser since it does not tell us whether the syntax tree constructed by
the parser is the correct one. For instance, the interpretation of back-
slashes in word literals cannot be validated unless we actually compare
the trees produced by MORBIG with the trees produced by other POSIX
shell implementations. We can nonetheless imagine several ways how
the parser can be validated in the future.

One approach is to write a pretty-printer that sequentializes the
concrete syntax tree constructed by the parser. The problem is that our
parser has dropped part of the layout present in the shell script, in
particular information about spaces, and comments. Still, a pretty
printer can be useful to a human when verifying the correct action of
the parser on a particular case of doubt: this is the technique we used to
build our testsuite.

It might also be possible to compare the result obtained by our
pretty-printer with the original script after passing both through a
simple filter that removes comments and normalizes spaces.
Furthermore, a pretty-printing functionality can be used for an

automatic smoke test on the complete corpus: the action that consists of
parsing a shell script and then pretty-printing it must be idempotent,
that is performing it twice on a shell script must yield the same result as
performing it once.

Another possible approach is to combine our parser with an inter-
preter that executes the concrete syntax tree. This way, we can compare
the result of executing a script obtained by our interpreter with the
result obtained by one of the existing POSIX shell interpreters.

We also recall that static parsing is incompatible with aliases and
the eval mechanism, as explained in Section 2.3. For this reason,
MORBIG will always have only a limited support for these constructions.

6. Availability and benchmarks

MORBIG is Free Software, published under the GPL3 license. It is
available at https://github.com/colis-anr/morbig, as an OPAM
package, and as a Debian package.

On a i7-4600U CPU @ 2.10GHz with 4 cores, an SSD hard drive and
8GB of RAM, it takes 7.38s8 to parse the 31,330 POSIX scripts among
the 31,582 maintainer scripts in the Debian GNU/Linux distribution
and to serialize the corresponding concrete syntax trees on the disk. Our
parser fails on only one script which uses indeed a BASH-specific ex-
tension of the syntax.

The average time to parse a script from the corpus of Debian
maintainer scripts is therefore 0.2ms (with a standard deviation which
is less than 1% of this duration). The maximum parsing time is 70ms,
reached for the prerm script of package w3c-sgml-lib_1.3-1_all
which is 1121 lines long.

We compared MORBIG to DASH on the whole archive from Software
Heritage, containing 7,436,215 scripts in total. We used a machine with
an Intel Xeon Processor E5-4640 v2 @ 2.20GHz with 40 cores and
756GB of RAM, where all the scripts were loaded in a tmpfs in RAM. It
takes 400s to DASH and 3400s to MORBIG to parse all these scripts. This
means respectively 19,000 and 2200 scripts per second. Although DASH

is faster, the difference is less than an order of magnitude.

7. Related work

7.1. About the POSIX shell language

Analysis of package maintainer scripts To our knowledge, the only
existing attempt to analyze a complete corpus of package maintainer
scripts was done in the context of the Mancoosi project [14]. An ar-
chitecture of a software package installer is proposed that simulates a
package installation on a model of the current system in order to detect
possible failures. The authors have identified 52 templates which cover
completely 64.3% of all the 25.440 maintainer scripts of the Debian
Lenny release. These templates are then used as building blocks of a
DSL that abstracts maintainer scripts. In this work, a first set of script
templates had been extracted from the relevant Debian toolset (DEB-

HELPER), and then extended by clustering scripts using the same state-
ments [15]. The tool used in this works is geared towards comparing
shell scripts with existing snippets of shell scripts, and is based on
purely textual comparisons.

Analysis of shell scripts There have been few attempts to formalize
the shell. Recently, Greenberg [16–18] has presented a formal seman-
tics of POSIX shell. This work is however not focused on the syntax and
relies on external parsers[18]. suggests that MORBIG could be one of these
in the future. The work behind Abash [19] contains a formalization of
the part of the semantics concerned with variable expansion and word
splitting. The Abash tool itself performs abstract interpretation to
analyze possible arguments passed by Bash scripts to UNIX commands,
and thus to identify security vulnerabilities in Bash scripts. It is however

8 Measured with the UNIX /usr/bin/time command.
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limited to this particular point of Bash scripts. Several other tools can
spot certain kinds of errors in shell scripts. The CHECKBASHISMS [20] script
detects usage of Bash-specific syntax in shell scripts, it is based on
matching Perl regular expressions against a normalized shell script text.
It does not include a parser for any variant of shell. This tool is currently
used in Debian as part of the lintian package analyzing suite. The
tool SHELLCHECK [21] detects error-prone usage of the shell language. This
tool is written in Haskell with the parser combinator library PARSEC.
Therefore, there is no YACC grammar in the source code to help us de-
termine how far from the POSIX standard the language recognized
by SHELLCHECK is. Besides, the tool does not produce intermediate con-
crete syntax trees which forces the analyses to be done on the fly during
parsing itself. This approach lacks modularity since the integration of
any new analysis requires the modification of the parser source code.
Nevertheless, as it is hand-crafted, the parser of SHELLCHECK can keep a
fine control on the parsing context: this allows for the generation of
very precise and helpful error messages. We plan to use MENHIR’s new
mechanism to specify error cases to produce error messages of similar
quality.

7.2. About parsing technologies

General parsing frameworks
MENHIR [10] is based on a conservative extension of LR(1)[4], in-

spired by Pager’s algorithm [22]: it produces pushdown automata al-
most as compact as LALR(1) automata without the risk of introducing
LALR(1) conflicts. As a consequence, the resulting parsers are both ef-
ficient (word recognition has a linear complexity) and reasonable in
terms of space usage.

However, the set of LR(1) languages is a strict subset of the set of
context-free languages. For context-free languages which are not LR(1),
there exist well-known algorithms like Earley’s [23,24], GLR [25],
GLL [26] or general parser combinators [27]. These algorithms can base
their decision on an arbitrary number of lookups, can cope with am-
biguous grammars by generating parse forests instead of parse trees,
and generally have a cubic complexity. There also exist parsing algo-
rithms and specifications that go beyond context-free grammars, e.g.
reflective grammars [28] or data-dependent grammars [29].

Since the grammar of POSIX shell is ambiguous, one may wonder
why we stick to an LR(1) parser instead of choosing a more general
parsing framework like the ones cited above. First, as explained in
Section 2.4, the POSIX specification embeds a YACC grammar specifica-
tion which is annotated by rules that change the semantics of this
specification, but only locally by restricting the application of some of
the grammar rules. Hence, if we forget the shift/reduce conflicts men-
tioned in Section 2.4, this leads us to think that the author of the POSIX
specification actually have a subset of an LR(1) grammar in mind. Being
able to use an LR(1) parser generator to parse the POSIX shell language
may be an indication that this belief is true. Second, even though we
need to implement some form of speculative parsing to efficiently de-
cide if a word can be promoted to a reserved word, the level of non-
determinism required to implement this mechanism is quite light. In-
deed, it suffices to exploit the purely functional state of our parser to
implement a backtracking point just before looking at one or two new
tokens to decide if the context is valid for the promotion, or not. This
machinery is immediately available with the interruptible and purely
functional LR(1) parsers produced by MENHIR.

Scannerless parsing
Many legacy languages (e.g. PL/1, COBOL, FORTRAN, R, etc.) enjoy

a syntax that is incompatible with the traditional separation between
lexical analysis and syntactic analysis. Indeed, when lexical conventions
(typically the recognition of reserved words) interact in a nontrivial
way with the parsing context, the distinction between lexing and par-
sing fades away. For this reason, it can perfectly make sense to imple-
ment the lexical conventions in terms of context-free grammar rules and
to mix them with the language grammar. With some adjustments of the

GLR parsing algorithm to include a longest-match strategy and with the
introduction of specification mechanisms to declare layout conventions
efficiently, the ASF+SDF project [30] has been able to offer a de-
clarative language to specify modular scannerless grammar [31] spe-
cifications for many legacy languages with parsing-dependent lexical
conventions.

Unfortunately, as said in Section 2.1.1, the lexical conventions of
POSIX shell are not only parsing-dependent but also specified in a
“negative way”: POSIX defines token recognition by characterizing how
tokens are delimited, not how they are recognized. Besides, as shown in
Section 2.1.2, the layout conventions of POSIX shell, especially the
handling of newline characters, are unconventional, hence they hardly
match the use cases of existing scannerless tools. Finally, lexical con-
ventions depend not only on the parsing context but also on the nesting
context as explained in Section 2.1.3. For all these reasons, we are
unable to determine how these unconventional lexical rules could be
expressed following the scannerless approach. More generally, it is
unclear to us if the expressivity of ASF+SDF specifications is sufficient
to handle the POSIX shell language without any extra code written in a
general purpose programming language.

Schrödinger’s tokens
Schrödinger’s tokens [32] is a technique to handle parsing-depen-

dent lexical conventions by means of a superposition of several states
on a single lexeme produced by the lexical analysis. This superposition
allows to delay to parsing time the actual interpretation of an input
string while preserving the separation between the scanner and the
parser. This technique only requires minimal modification to parsing
engines. MORBIG’s promotion of words to reserved words follows a si-
milar path: the prelexer produces pretokens which are similar to
Schrödinger’s tokens since they enjoy several potential interpretations
at parsing time. The actual decision about which is the right inter-
pretation of these pretokens as valid grammar tokens is deferred to the
lexer and obtained by speculative parsing. No modification of MENHIR’s
parsing engine was required thanks to the incremental interface of the
parsers produced by MENHIR: the promotion code can be written on top
of this interface.

8. Conclusion

Statically parsing shell scripts is notoriously difficult, due to the fact
that the shell language was not designed with static analysis in mind.
Nevertheless, we found ourselves in need of a tool that allows us to
easily perform a number of different statistical analyses on a large
number of scripts. We have written a parser that maintains a high level
of modularity, despite the fact that the syntactic analysis of shell scripts
requires an interaction between lexing and parsing that defies the tra-
ditional approach.
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