
HAL Id: hal-01890044
https://hal.archives-ouvertes.fr/hal-01890044

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Morbig: A Static Parser for POSIX Shell
Yann Régis-Gianas, Nicolas Jeannerod, Ralf Treinen

To cite this version:
Yann Régis-Gianas, Nicolas Jeannerod, Ralf Treinen. Morbig: A Static Parser for POSIX Shell.
SLE 2018 - ACM SIGPLAN International Conference on Software Language Engineering, Nov 2018,
Boston, United States. <10.1145/3276604.3276615>. <hal-01890044>

https://hal.archives-ouvertes.fr/hal-01890044
https://hal.archives-ouvertes.fr

Morbig: A Static Parser for POSIX Shell
Yann Régis-Gianas

IRIF, Université Paris-Diderot, CNRS,
INRIA PI.R2
Paris, France

Nicolas Jeannerod
IRIF, Université Paris-Diderot, CNRS

École normale supérieure
Paris, France

Ralf Treinen
IRIF, Université Paris-Diderot, CNRS

Paris, France

Abstract
The POSIX shell language defies conventional wisdom of
compiler construction on several levels: The shell language
was not designed for static parsing, but with an intertwining
of syntactic analysis and execution by expansion in mind.
Token recognition cannot be specified by regular expres-
sions, lexical analysis depends on the parsing context and
the evaluation context, and the shell grammar given in the
specification is ambiguous. Besides, the unorthodox design
choices of the shell language fit badly in the usual specifi-
cation languages used to describe other programming lan-
guages. This makes the standard usage of Lex and Yacc as a
pipeline inadequate for the implementation of a parser for
POSIX shell. The existing implementations of shell parsers
are complex and use low-level character-level parsing code
which is difficult to relate to the POSIX specification. We find
it hard to trust such parsers, especially when using them for
writing automatic verification tools for shell scripts.

This paper offers an overview of the technical difficulties
related to the syntactic analysis of the POSIX shell language.
It also describes howwe have resolved these difficulties using
advanced parsing techniques (namely speculative parsing,
parser state introspection, context-dependent lexical analysis
and longest-prefix parsing) while keeping the implementa-
tion at a sufficiently high level of abstraction so that experts
can check that the POSIX standard is respected. The result-
ing tool, called Morbig, is an open-source static parser for a
well-defined and realistic subset of the POSIX shell language.

CCSConcepts • Software and its engineering→Parsers;

Keywords Parsing, POSIX shell, functional programming

ACM Reference Format:
Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen. 2018.Mor-
big: A Static Parser for POSIX Shell. In Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engineer-
ing (SLE ’18), November 5–6, 2018, Boston, MA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3276604.3276615

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SLE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00
https://doi.org/10.1145/3276604.3276615

1 Introduction
Scripts are everywhere on UNIX machines, and many of
them are written in POSIX shell. The POSIX shell is a central
piece in the toolbox of a system administrator who may use
it to write scripts that perform all kinds of repetitive admin-
istration tasks. Furthermore, scripts are used in a systematic
way by GNU/Linux distributions for specific tasks, like for
writing cron jobs which are regularly executed, init scripts
(depending on the init system) that start or stop services,
or scripts which are executed as part of the process of in-
stalling, removing or upgrading software packages. The De-
bian GNU/Linux distribution, for instance, contains 31.8321
of these so-called maintainer scripts, 31,521 of which are
written in POSIX shell.

These scripts are often executed with root privileges since
they have to act on the global system installation, for in-
stance when installing software packages. As a consequence,
erroneous scripts can wreak havoc on a system, and there is
indeed a history of disastrous shell scripts (one of the authors
of this paper takes the blame for one of these). An ongoing
research project2 aims at using formal verification tools for
analyzing shell scripts.

The first step when statically analyzing shell scripts is to
analyze their syntactic structure, and to produce a syntax
tree. This seems at first sight an easy task: after all, the
POSIX standard contains a grammar, so one might think
that a parser can be thrown together in a day or so, reusing
what one has learned in an introductory course on compiler
construction. The reality is far from that! It starts with the
fact that the POSIX shell language was never designed for
being statically analyzed. In fact, the shell analyses pieces of
syntax of a script, on the fly, in a process that is intertwined
with an evaluation mechanism called expansion. But this
is only the start, the syntax of POSIX shell is full of pitfalls
which we will explain in detail in the next section, and which
make it surprisingly difficult to write a parser for POSIX shell.
For this reason, existing implementations of shell inter-

preters contain hand-crafted syntactic analyzers that are
very hard to understand. Due to the way the shell semantics
is defined, they do not construct a complete syntax tree, but
produce pieces of syntax on the fly. We could probably have
taken one of these implementations and tweaked it into con-
structing a complete syntax tree. The problem is, how can
we trust such a parser? The parser is an essential part of our

1unstable, amd64 architecture, as of 29/11/2016
2CoLiS, “Correctness of Linux Scripts”, https://colis.irif.fr

https://doi.org/10.1145/3276604.3276615
https://doi.org/10.1145/3276604.3276615
https://colis.irif.fr

SLE ’18, November 5–6, 2018, Boston, MA, USA Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen

tool chain, if the parser produces incorrect syntax trees then
all formal analysis based on it will be worthless.

The standard techniques to implement syntactic analyzers
are based on code generators. Using code generators is an
excellent software engineering practice which allows us to
write high-level and easily maintainable code. These tools
take as input high-level formal descriptions of the lexical
conventions and of the grammar and produce low-level ef-
ficient code using well-understood computational devices
(typically finite-state transducers for lexical analysis, and
pushdown automata for parsing). This standard approach
is trustworthy because (i) the high-level descriptions of the
lexical conventions and grammar are usually close to their
counterparts in the specification; (ii) the code generators are
based on well-known algorithms like LR-parsing which have
been studied for almost fifty years[16]. The problem with
this approach is that the standard Lex-Yacc pipeline is inad-
equate for POSIX shell, as we will argue in the next section.
Despite the pitfalls of the shell language, we nonetheless
managed to maintain an important part of generated code in
our implementation, described in Section 3. To sum things
up, we claim the following contributions:
(i) This paper provides an overview of the difficulties re-

lated to the syntactic analysis of the POSIX shell language as
well as a list of technical requirements that are, in our opin-
ion, needed to implement a static parser for this language.
(ii) This paper describes a modular architecture that ar-

guably simplifies code review, especially because it follows
the POSIX specification decomposition into token recogni-
tion and syntactic analysis, and because it embeds the official
BNF grammar, which makes more explicit the mapping be-
tween the specification and the implementation.
(iii) This paper is finally a demonstration that an LR(1)

parser equipped with a purely functional and incremental
interface is a lightweight solution to realize the advanced
parsing techniques required by POSIX shell parsing, namely
speculative and reentrant parsing, longest-match parsing as
well as parsing-dependent “negatively specified” lexing.

2 The perils of POSIX shell
The POSIX Shell Command Language is specified by the
Open Group and IEEE in the volume “Shell & Utilities” of the
POSIX standard. Our implementation is based on the latest
published draft of this standard [14].
This standardization effort synthesizes the common con-

cepts and mechanisms that can be found in the most com-
mon implementations of shell interpreters like bash or dash.
Unfortunately, as said in the introduction, it is really hard
to extract a high-level declarative specification out of these
existing implementations because the shell language is inher-
ently irregular, and because its unorthodox design choices
fit badly in the usual specification languages used by other
programming language standards.

Syntactic analysis is most often decomposed into two dis-
tinct phases: (i) lexical analysis, which synthesizes a stream
of lexemes from a stream of input characters by recognizing
lexemes as meaningful character subsequences and by ignor-
ing insignificant character subsequences such as layout; (ii)
parsing which synthesizes a parse tree from the stream of
tokens according to some formal grammar.
In this section, we describe several aspects which make

the shell language hard (and actually impossible in general)
to parse using the standard decomposition described above,
and more generally using the standard parsing tools and
techniques. These difficulties not only raise a challenge in
terms of programming but also in terms of reliability.

2.1 Non standard lexical conventions
2.1.1 Token recognition
In usual programming languages, most of the categories of
tokens are specified by means of regular expressions. As
explained earlier, lexer generators such as Lex conveniently
turn such high-level specifications into efficient finite state
transducers, which makes the resulting implementation both
reliable and efficient.
The token recognition process for the shell language is

described in Section 2.3 of the specification [13], unfortu-
nately without using any regular expressions. While other
languages use regular expressions with a longest-match strat-
egy to recognize the next lexeme in the input, the specifica-
tion of the shell language is formulated in a “negative way”.
Indeed, token recognition is based on a state machine which
explains instead how tokens must be delimited in the input
and how these delimited chunks must be classified into two
categories: words and operators.
The state machine which recognizes the tokens is unfor-

tunately not a regular finite state machine. It is almost as
powerful as a pushdown automaton since it must be able
to recognize nested quotations like the ones found in the
following example.

Example 2.1 (Quotations). Consider the following input:

1 BAR='foo'"ba"r

2 X=0 echo x$BAR" "$(echo $(date))

By the lexical conventions of most programming languages,
the first line would be decomposed as five distinct tokens
(namely BAR, =, ’foo’, "ba" and r). On the contrary, the
lexical conventions of the shell language considers the entire
line BAR=’foo’"ba"r as a single token, classified into the
category of words. On the second line, the input is split
into the tokens X=0, echo and x$BAR" "$(echo $(date)).
Notice that the third token contains nested quotations of the
form $(..$(..)) the recognition of which is out of the
scope of regular finite state machines (without a stack).

Morbig: A Static Parser for POSIX Shell SLE ’18, November 5–6, 2018, Boston, MA, USA

2.1.2 Layout
The shell language also has some unconventional lexical con-
ventions regarding the interpretation of newline characters.
Usually, newline characters are simply ignored by the lexing
phase since they only serve as delimiters between tokens. In
shell, however, newline characters are meaningful, and there
are even four different interpretations of a newline depend-
ing on the parsing context. Therefore, most of the newline
characters (but not all, as we shall see in the next example)
must be transmitted to the parser. Hence, one step of token
recognition may produce several tokens: the delimited token
and a potential delimiter that must also be transmitted to
the parser. Again, this is not common practice since, usually,
lexical scanners produce at most one token every time they
are invoked.

Example 2.2 (Interpretations of newline characters). The
four interpretations of the newline characters occur in the
following example:
1 $ for i in 0 1

2 > # Some interesting numbers

3 > do echo $i \

4 > + $i

5 > done

On line 1, the newline character has a syntactic meaning
because it acts as a marker for the end of the sequence over
which the for-loop is iterating. On line 2, the newline char-
acter at the end of the comment must not be ignored but is
merged with the newline character of the previous line. On
line 3, the newline character is preceded by a backslash. This
sequence of characters is interpreted as a line-continuation,
which must be handled at the lexing level. That is, in this
case the newline is actually interpreted as layout. On lines 4
and 5, each of the final newlines terminates a command.

The recognition of comments of shell scripts are also non
conventional. Even though the specification rule regarding
comments seems quite standard:

If the current character is a ’#’, it and all subsequent
characters up to, but excluding, the next <newline>
shall be discarded as a comment. The <newline> that
ends the line is not considered part of the comment.

the fact that ’#’ is not a delimiter allows a word to contain
the character ’#’, as in the following example.

Example 2.3.
1 ls foo#bar

In that example, foo#bar is recognized as a single word.

2.1.3 Delimiting subshell invocations
From the lexical point of view, a subshell invocation is simply
a word. Delimiting these subshell invocations is hardly re-
ducible to regular expression matching. Indeed, to determine
the end of a subshell invocation, it is necessary to recursively

call the shell command parser so that it consumes the rest
of the input until a complete command is parsed.

Example 2.4 (Finding closing parenthesis requires context).
1 echo $(echo ')')

On line 1, the first occurrence of the right parenthesis does
not end the subshell invocation started by $(because it is
written between single quotes.

2.1.4 Character escaping
String literals of most programming languages may contain
escaping sequences to let the programmer use the entire
character set including string delimiters. The backslash char-
acter typically introduces such escaping sequence as in "\""
to insert a double quote or in "\\" to insert a backslash. The
rule of escaping is pretty simple: if a character is preceded
by a backslash, it must retain its literal meaning.

In a static parser for POSIX shell, this rule is significantly
more complex because the nesting of double quotes and
subshell invocations have an impact on the number of back-
slashes needed to escape a character, as shown by the fol-
lowing example.

Example 2.5 (Number of backslashes to escape).
1 echo " ` echo \" \\" \" ` "

2 echo `echo \`echo \\\`echo \

3 \\\\\\\ ` echo foobar \\\\\\\ `\\\ `\``

On line 1, a subshell is nested inside a double-quoted string
literal: in the subshell invocation, the first occurence of the
character ’"’ is not escaped even though it is preceded by a
backslash ; on the contrary, the second occurrence of ’"’ is
escaped because it is preceded by two backslashes. The com-
mand starting on line 2 illustrates the dependency between
the number of backslashes required to escape a character
and the nesting depth of subshell invocations.

2.1.5 Here-documents
Depending on the parsing context, the lexer must switch to a
special mode to deal with here-documents. Here-documents
are chunks of text embedded in a shell script. They are com-
monly used to implement some form of template-based gen-
eration of files (since they may contain variables). To use
that mode, the user provides textual end-markers and the
lexer then interprets all the input up to an end-marker as a
single token of the category of words. The input characters
are copied verbatim into the representation of the token,
with the possible exception of quotations which may still be
recognized exactly as in the normal lexing mode.

Example 2.6 (Here-documents).
1 cat > notifications << EOF

2 Hi $USER!

3 EOF

4 cat > toJohn << EOF1 ; cat > toJane << EOF2

5 Hi John!

6 EOF1

SLE ’18, November 5–6, 2018, Boston, MA, USA Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen

1 %token WORD ASSIGNMENT_WORD NAME NEWLINE IO_NUMBER

2 // The following are the operators (see XBD Operator)

3 // containing more than one character.

4 %token AND_IF OR_IF DSEMI // '&&' '||' ';;'

5 %token DLESS DGREAT LESSAND // '<<' '>>' '<&'

6 %token GREATAND LESSGREAT DLESSDASH // '>&' '<>'

'<<-'

7 %token CLOBBER // '>|' */

8 // The following are the reserved words.

9 %token If Then Else Elif Fi Do Done

10 // 'if' 'then' 'else' 'elif' 'fi' 'do' 'done'

11 %token Case Esac While Until For

12 // 'case' 'esac' 'while ' 'until ' 'for'

13 // These are reserved words , not operator tokens , and

14 // are recognized when reserved words are recognized.

15 %token Lbrace Rbrace Bang // '{' '}' '!'

16 %token In // 'in'

Figure 1. The tokens of the shell language grammar.

7 Hi Jane!

8 EOF2

In this example, the text on lines 2 and 3 is interpreted as
a single word which is passed as input to the cat command.
The first cat command of line 5 is fed with the content of
line 6 while the second cat command of line 5 is fed with
the content of line 8. This example with two successive here-
documents illustrates the non-locality of the lexing process
of here-document: the word related to the end-marker EOF1
is recognized several tokens after the introduction of EOF1.
This non-locality forces some form of forward declaration
of tokens, the contents of which is defined afterwards.

2.2 Parsing-dependent lexical analysis
While the recognition of tokens is independent from the
parsing context, their classification into words, operators,
newlines and end-of-file markers must be refined further
to obtain the tokens actually used in the formal grammar
specified by the standard. The declaration of these tokens
is reproduced in Figure 1. While a chunk categorized as an
operator is easily transformed into a more specific token like
AND_IF or OR_IF, an input chunk categorized as a word can
be promoted to a reserved word or to an assignment word
only if the parser is expecting such a token at the current
position of the input; otherwise the word is not promoted
and stays a WORD. This means that the lexical analysis has to
depend on the state of the parser. The following two sections
describe this specific aspect of the shell syntax.

2.2.1 Parsing-sensitive assignment recognition
The promotion of a word to an assignment depends both
on the position of this word in the input and on the string
representing that word. The string must be of the form w=u
where the substring wmust be a valid name, a lexical category
defined in Section 3.235 of the standard by the following
sentence:

[. . .] a word consisting solely of underscores, digits,
and alphabetics from the portable character set. The
first character of a name is not a digit.

Example 2.7 (Promotion of a word as an assignment).
1 CC=gcc make

2 make CC=cc

3 ln -s /bin/ls "X=1"

4 "./X"=1 echo

On line 1, the word CC=gcc is recognized as a word assign-
ment of gcc to CC because CC is a valid name for a variable,
and because CC=gcc is written just before the command
name of the simple command make. On line 2, the word
CC=cc is not promoted to a word assignment because it ap-
pears after the command name of a simple command. On
line 4, since "./X" is not a valid name for a shell variable, the
word "./X=1" is not promoted to a word assignment and is
interpreted as the command name of a simple command.

2.2.2 Parsing-sensitive keyword recognition
A word is promoted to a reserved word if the parser state
is expecting this reserved word at the current point of the
input:
Example 2.8 (Promotion of a word to a reserved word).
1 for i in a b; do echo $i; done

2 ls for i in a b

On line 1, the words for, in, do, done are recognized as
reserved words. On line 2, they are not recognized as such
since they appear in position of command arguments for the
command ls.
In addition to this promotion rule, some reserved words

can never appear in the position of a command.
Example 2.9 (Forbidden position for specific reservedwords).
1 else echo foo

The word else must be recognized as a reserved word and
the parser must reject this input.

2.2.3 Richly structured semantic values
The semantic value of a word can be complex since it can
be made of subshell invocations, variables and literals. As a
consequence, even though the grammar considers a word as
an atomic piece of lexical information, its semantic value is
represented by a dedicated concrete syntax tree.
Example 2.10 (Forbidden position for specific reservedwords).
1 x="$(echo foo)${x:-bar}"baz

This script is a single word read as an ASSIGNMENT_WORD
by the grammar. The semantic value of this lexeme is a
sequence of a double-quoted sequence followed by a literal.
The double-quoted sequence is itself composed of a subshell
invocation represented by the concrete syntax tree of its
command, followed by a variable that uses the default value
bar when expanded.

Morbig: A Static Parser for POSIX Shell SLE ’18, November 5–6, 2018, Boston, MA, USA

2.3 Evaluation-dependent lexical analysis
The lexical analysis also depends on the evaluation of the
shell script. Indeed, the alias builtin command of the POSIX
shell amounts to the dynamic definition of macros which
are expanded just before lexical analysis. Therefore, even
the lexical analysis of a shell script cannot be done without
executing it, that is, lexical analysis of unrestricted shell
scripts is undecidable. Fortunately, restricting the usage of
the alias command to top level commands only (that is,
outside of any control structure) and performing expansion
of these aliases in a preprocessing pass of the parser allows
us to implement a simple form of alias expansion without
endangering decidability.

Example 2.11 (Lexical analysis is undecidable).
1 if ./foo; then

2 alias x="ls"

3 else

4 alias x=""

5 fi

6 x for i in a b; do echo $i; done

To decide if for in line 6 is a reserved word, a lexer must
be able to know the success of an arbitrary program ./foo,
which is impossible to do statically. Hence, the lexer must
wait for the evaluation of the first command before parsing
the second one.

1 alias x="ls"

2 x for i in a b; do echo $i; done

If the shell script only uses alias at the top level, the parser
can maintain a table for aliases and apply on-the-fly a sub-
stitution of aliases by their definitions just before the lexical
analysis. Notice that this substitution introduces a desynchro-
nization between the positions of tokens in the lexing buffer
and their actual positions in the source code: this complicates
the generation of precise locations in error messages.

Another problematic feature of the shell language is eval.
This builtin constructs a command by concatenating its ar-
guments, separated by spaces, and then executes the con-
structed command in the shell. In other words, the construc-
tion of the command that will be executed depends on the
execution of the script, and hence cannot be statically known
by the parser.

2.4 Ambiguous grammar
The grammar of the shell language is given in Section 2.10
of the standard. Due to lack of space we only reproduce a
fragment of it in Figure 2. At first sight, the specification
seems to be written in the input format of the Yacc parser
generator. However, Yacc cannot handle this specification
as-is for two reasons: (i) the specification is annotated with
nine special rules which are not directly expressible in terms
of Yacc’s parsing mechanisms; (ii) the grammar contains
LR(1) conflicts.

2.4.1 Special rules
The nine special rules of the grammar are actually the place
where the parsing-dependent lexical conventions are ex-
plained. By lack of space, we only focus on the Rule 4 to give
the idea. This is an excerpt from the standard describing this
rule:

[Case statement termination]
When the TOKEN is exactly the reserved word esac,
the token identifier for esac shall result. Otherwise, the
tokenWORD shall be returned.

The grammar refers to that rule in the following case:
pattern:
WORD /* Apply rule 4 */

| pattern '|' WORD /* Do not apply rule 4 */;

Roughly speaking, this annotation says that when the
parser is recognizing a pattern and when the next token is
the specific WORD esac, then the next token is actually not a
WORD but the token Esac. In that situation, one can imagine
that an LR parser must pop up its stack to a state where
it is recognizing the non terminal case_clause defined as
follows:
case_clause:
Case WORD linebreak in linebreak case_list Esac
| Case WORD linebreak in linebreak case_list_ns Esac
| Case WORD linebreak in linebreak Esac

to conclude the recognition of the current case_list.

2.4.2 LR(1) conflicts
Our LR(1) parser generator detects five shift/reduce conflicts
in the Yacc grammar of the standard. All these conflicts are
related to the analysis of newline characters in the body of
case items in case analysis. Indeed, the grammar is not LR(1)
with respect to the handling of these newline characters.
Here is the fragment of the grammar that is responsible for
these conflicts:
compound_list: linebreak term | linebreak term separator;
case_list_ns : case_list case_item_ns | case_item_ns;
case_list : case_list case_item | case_item;
case_item_ns : pattern ')' linebreak

| pattern ')' compound_list
| '(' pattern ')' linebreak
| '(' pattern ')' compound_list;

case_item : pattern ')' linebreak DSEMI linebreak
| pattern ')' compound_list DSEMI linebreak
| '(' pattern ')' linebreak DSEMI linebreak
| '(' pattern ')' compound_list DSEMI linebreak;

separator : separator_op linebreak | newline_list;
newline_list : NEWLINE | newline_list NEWLINE;
linebreak : newline_list | /* empty */;

When a NEWLINE is encountered after term in a context
of the following form:

1 case ... in ...)

an LR parser cannot choose between reducing the term into
a compound_list or shifting the NEWLINE to start the recog-
nition of the final separator of the current compound_list.
Fortunately, as the newline character has no semantic

meaning in the shell language, choosing between reduction
or shift has no significant impact on the output parse tree.

SLE ’18, November 5–6, 2018, Boston, MA, USA Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen

1 program:

2 linebreak complete_commands linebreak | linebreak;

3 complete_commands:

4 complete_commands newline_list complete_command

5 | complete_command;

6 complete_command:

7 list separator_op | list;

8 list:

9 list separator_op and_or | and_or;

10 and_or:

11 pipeline

12 | and_or AND_IF linebreak pipeline

13 | and_or OR_IF linebreak pipeline;

14 pipeline:

15 pipe_sequence | Bang pipe_sequence;

16 pipe_sequence:

17 command | pipe_sequence '|' linebreak command;

18 command:

19 simple_command | compound_command

20 | compound_command redirect_list | function_definition;

21 compound_command:

22 brace_group | subshell | for_clause | case_clause

23 | if_clause | while_clause | until_clause;

24 subshell:

25 '(' compound_list ')';

26 compound_list:

27 linebreak term | linebreak term separator;

28 term:

29 term separator and_or | and_or;

30 while_clause:

31 While compound_list do_group;

32 do_group:

33 Do compound_list Done /* Apply rule 6 */;

34 simple_command:

35 cmd_prefix cmd_word cmd_suffix

36 | cmd_prefix cmd_word

37 | cmd_prefix

38 | cmd_name cmd_suffix

39 | cmd_name;

40 cmd_name:

41 WORD /* Apply rule 7a */;

42 cmd_word:

43 WORD /* Apply rule 7b */;

44 newline_list:

45 NEWLINE | newline_list NEWLINE;

46 linebreak:

47 newline_list | /* empty */;

48 separator_op:

49 '&' | ';';

50 separator:

51 separator_op linebreak | newline_list;

52 sequential_sep:

53 ';' linebreak | newline_list;

54
55 // The rules for the following nonterminals are elided:

56 // for_clause , name , in, wordlist , case_clause ,

57 // case_list_ns , case_list , case_item_ns , case_item ,

58 // pattern if_clause , else_part , until_clause ,

59 // function_definition , function_body , fname ,

60 // brace_group , cmd_prefix , cmd_suffix , redirect_list ,

61 // io_redirect , io_file , filename , io_here and here_end

.

Figure 2. A fragment of the official grammar for the shell language.

3 Unorthodox parsing
Our parser library is designed for a variety of applications,
including statistical analysis of the concrete syntax of scripts
(see, for instance, Section 4.2). Therefore, contrary to parsers
typically found in compilers or interpreters, our parser does
not produce an abstract syntax tree from a syntactically cor-
rect source but a parse tree instead. A parse tree, or concrete
syntax tree, is a tree whose nodes are grammar rule applica-
tions.Because we need concrete syntax trees (and also, as we
shall see, because we want high assurance about the com-
pliance of the parser with respect to the POSIX standard),
reusing an existing parser implementation was not an option,
as said in the introduction. Our research project required the
reimplementation of a static parser from scratch.

Before entering the discussion about implementation choices,
let us sum up a list of the main requirements that are implied
by the technical difficulties explained in Section 2: (i) lexical
analysis must be aware of the parsing context and of some
contextual information like the nesting of double quotes and
subshell invocations ; (ii) lexical analysis must be defined in
terms of token delimitations, not in terms of token (regular)
languages recognition; (iii) the syntactic analysis must be
able to return the longest syntactically valid prefix of the

input ; (iv) the parser must be reentrant ; (v) the parser must
forbid certain specific applications of the grammar produc-
tion rules ; (vi) the parser must be able to switch between the
token recognition process and the here-document scanner.
In addition to these technical requirements, there is an extra
methodogical one: the mapping between the POSIX specifi-
cation and the source code must be as direct as possible.
The tight interaction between the lexer and the parser

prevents us from writing our syntactic analyzer following
the traditional design found in most textbooks [2], that is a
pipeline of a lexer followed by a parser. Hence, we cannot
use either the standard interfaces of code generated by Lex
and Yacc, because these interfaces have been designed to
fit this traditional design. There exists alternative parsing
technologies, e.g. scannerless generalized LR parsers or top-
down general parsing combinators, that could have offered
elegant answers to many of the requirements enumerated
previously, but as we will explain in Section 7, we believe
that none of them fulfill the entire list of these requirements.
In this situation, one could give up using code genera-

tors and fall back to the implementation of a hand-written
character-level parser. This is done in Dash for instance:
the parser of Dash 0.5.7 is made of 1569 hand-crafted lines

Morbig: A Static Parser for POSIX Shell SLE ’18, November 5–6, 2018, Boston, MA, USA

of C code. This parser is hard to understand because it is
implemented by low-level mechanisms that are difficult to
relate to the high-level specification of the POSIX standard:
for example, lexing functions are implemented by means
of gotos and complex character-level manipulations; the
parsing state is encoded using activation and deactivation of
bit fields in one global variable; some speculative parsing is
done by allowing the parser to read the input tokens several
times, etc.

Other implementations, like the parser of Bash, are based
on a Yacc grammar extended with some code to work around
the specificities of shell parsing. We follow the same ap-
proach except on two important points. First, we are stricter
than Bash with respect to the POSIX standard: while Bash
is using an entirely different grammar from the standard,
we literally cut-and-paste the grammar rules of the standard
into our implementation to prevent any change in the recog-
nized language. Second, in Bash, the amount of hand-written
code that is accompanying the Yacc grammar is far from
being negligible. Indeed, we counted approximately 5000
extra lines of C to handle the shell syntactic peculiarities. In
comparison, our implementation only needed approximately
10003 lines of OCaml to deal with them.

Of course, these numbers should be taken with some pre-
caution since OCaml has a higher abstraction level than
C, and since Bash implements a significant extension of
the shell language. Nonetheless, we believe that our design
choices greatly help in reducing the amount of ad hoc code
accompanying the Yacc grammar of the POSIX standard.
The next sections try to give a glimpse of the key aspects of
our parser implementation.

3.1 A modular architecture
Our main design choice is not to give up on modularity. As
shown in Figure 3, the architecture of our syntactic analyzer
is similar to the common architecture found in textbooks as
we clearly separate the lexing phase and the parsing phase
in two distinct modules with clear interfaces. Let us now
describe the original aspects of this architecture.

As suggested by the illustration, we decompose lexing into
two distinct subphases. The first phase called “prelexing” is
implementing the “token recognition” process of the POSIX
standard. As said earlier, this parsing-independent step clas-
sifies the input characters into three categories of “preto-
kens”: operators, words and potentially significant layout
characters (newline characters and end-of-input markers).
This module is implemented using OCamllex, a lexer gen-
erator distributed with the OCaml language. In Section 3.2,
we explain which features of this generator we use to get
a high-level implementation of lexical conventions close to
the informal description of the specification.

3The total number of lines of code is 2141, including type definitions, utilities
and infrastructure.

Lexer Parser
Tokens

LexerPrelexer Parser
Pretokens

Tokens

State

Figure 3. Architectures of syntactic analyzers: at the top of
the figure, the standard pipeline commonly found in com-
pilers and interpreters; at the bottom of the figure, the ar-
chitecture of our parser in which there is a bidirectional
communication between the lexer and the parser.

The second phase of lexing is parsing-dependent. As a
consequence, a bidirectional communication between the
lexer and the parser is needed. On one side, the parser is
waiting for a stream of tokens to reconstruct a parse tree.
On the other side, the lexer needs some parsing context to
promote words to keywords or assignment words, to switch
to the lexing mode for here-documents, and to discriminate
between the four interpretations of the newline character
(see Example 2.2). We manage to implement all these ad
hoc behaviors using speculative parsing, which is easily im-
plemented thanks to the incremental and purely functional
interface produced by the parser generator Menhir [21].
This technique is described in Section 3.3.

3.2 Mutually recursive parametric lexers
The lexer generators of the Lex family are standard tools
that compile a pattern matching made of regular expressions
into an efficient finite state machine. When a specific regular
expression is matched, the generated code triggers the exe-
cution of some piece of user-written code. In theory, there is
no limitation on the computational expressiveness of lexers
generated by Lex since any side-effect on the lexing engine
may be performed in the arbitrary code attached to each
regular expression. In practice though, it can be difficult to
develop complex lexical analyzers with Lex especially when
several sublexers must be composed to recognize a single
token which is the concatenation of several words of dis-
tinct nature (like the word $BAR" "$(echo $(date)) we
encountered earlier) or when they have to deal with nested
constructions (like the parenthesized quotations of the shell
language, for instance).

OCamllex is the lexer generator of the OCaml program-
ming language. OCamllex extends the specification lan-
guage of Lexwith many features, two of which are exploited
in our implementation. First, in OCamllex, a lexer can be
defined by a set of mutually recursive entry points. This way,
even if a word can be recognized as a concatenation of words
from distinct sublanguages, we are not forced to define these
sublanguages in the same pattern matching: on the contrary,
each category can have a different entry point in the lexer
which leads to modular and readable code. Thanks to this

SLE ’18, November 5–6, 2018, Boston, MA, USA Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen

organization of the lexical rules, we were able to separate the
lexer into a set of entry points where each entry point refers
to a specific part of the POSIX standard. This structure of the
source code eases documentation and code reviewing, hence
it increases its reliability. Second, each entry point of the lexer
can be parameterized by one or several arguments. These
arguments are typically used to have the lexer track contex-
tual information along the recognition process. Combined
with recursion, these arguments provide to lexers the same
expressiveness as deterministic pushdown automata. This
extra expressive power of the language allows our lexer to
parse nested structures (e.g. parenthesized quotations) even
if they are not regular languages. In addition, the parameters
of the lexer entry points make it possible for several lexical
rules to be factorized out in a single entry point. Last but not
least, the prelexer context is flexible enough to maintain the
word-level concrete syntax trees mentioned in Section 2.2.3.

3.3 Incremental and purely functional parsing
Yacc-generated parsers usually provide an all-or-nothing
interface: when they are run, they either succeed and produce
a semantic value, or they fail if a syntax error is detected.
Once invoked, these parsers take control and do not give it
back unless they have finished their computation. During its
execution, a parser calls its lexer to get the next token but
the parser does not transmit any information during that
call since the lexer is usually independent from parsing.
As we have seen, in the case of the shell language, when

the lexer needs to know if a word must be promoted to a key-
word or not, it must inspect the parser context to determine
if this keyword is an acceptable token at the current position
of the input. Therefore, the conventional calling protocol of
lexers from parsers is not adapted to this situation.
Fortunately, theMenhir [21] parser generator has been

recently extended by François Pottier to produce an incre-
mental interface instead of the conventional all-or-nothing
interface. In that new setting, the caller of a parser must man-
ually provide the input information needed by this parser for
its next step of execution and the parser gives back the con-
trol to its caller after the execution of this single step. Hence,
the caller can implement a specific communication protocol
between the lexer and the parser. In particular, the state of
the parser can be transmitted to the lexer. This protocol be-
tween the incremental parser generated by Menhir and the
parsing engine is specified by a single type definition:

1 type 'a checkpoint = private

2 | InputNeeded of 'a env

3 | Shifting of 'a env * 'a env * bool

4 | AboutToReduce of 'a env * production

5 | HandlingError of 'a env

6 | Accepted of 'a

7 | Rejected

Avalue of type 'a checkpoint represents the entire immutable
state of the parser generated by Menhir. The type parame-
ter 'a is the type of semantic values produced by a successful
parsing. The type 'a env is the internal state of the parser
which roughly speaking contains the stack and the current
state of the generated LR pushdown automaton. As specified
by this sum type, there are six situations where the incremen-
tal parser generated byMenhir interrupts itself to give the
control back to the parsing engine: (i)InputNeeded means that
the parser is waiting for the next token. By giving back the
control to the parsing engine and by exposing a parsing state
of type 'a env, the lexer has the opportunity to inspect this
parsing state and decide which token to transmit. This is the
property we exploit to implement the parsing-dependent lex-
ical analysis. (ii) Shifting is returned by the generated parser
just before a shift action. We do not exploit this particular
checkpoint. (iii) AboutToReduce is returned just before a reduce
action. We exploit this checkpoint to implement the treat-
ment of reserved words. (See Section 3.3.1.) (iv) HandlingError
is returned when a syntax error has just been detected. We
do not exploit this checkpoint. (v) Accepted is returned when a
complete command has been recognized. In that case, if we
are not at the end of the input file, we reiterate the parsing
process on the remaining input. (vi) Rejected is returned when
a syntax error has not been recovered by any handler. This
parsing process stops on an error message.
Now that the lexer has access to the state of the parser,

how can it exploit this state? Must it go into the internals
of LR parsing to decipher the meaning of the stack of the
pushdown automaton?
Actually, a far simpler answer can be implemented most

of the time: the lexer can simply perform some speculative
parsing to observationally deduce information about the
parsing state. In other words, to determine if a token is com-
patible with the current parsing state, the lexer just executes
the parser with the considered token to check whether it
produces a syntax error, or not. If a syntax error is raised,
the lexer backtracks to the parsing state that was just before
the speculative parsing execution.
If the parsing engine of Menhir were imperative, then

the backtracking process required to implement speculative
parsing would necessitate some machinery to undo parsing
side-effects. Since the parsing engine of Menhir is purely
functional we do not need such a machinery: the state of the
parser is an explicit immutable value passed to the parsing
engine which returns in exchange a fresh new parsing state
without modifying the input state. The API to interact with
the generated parser is restricted to only two functions:
1 val offer:

2 'a checkpoint -> token * position * position

3 -> 'a checkpoint

4 val resume:

5 'a checkpoint -> 'a checkpoint

Morbig: A Static Parser for POSIX Shell SLE ’18, November 5–6, 2018, Boston, MA, USA

The function offer is used when the checkpoint is exactly of
the form InputNeeded. In that specific case, the argument is a
triple of type token * position * position passed to the generated
parser.
The function resume is used for the other cases to give the

control back to the generated parser without transmitting
any new input token.
From the programming point of view, backtracking is as

cheap as declaring a variable to hold the state to recover it if
a speculative parsing goes wrong. From the computational
point of view, thanks to sharing, the overhead in terms of
space is negligible and the overhead in terms of time is rea-
sonable since we never transmit more than one input token
to the parser when we perform such speculative parsing.

Another essential advantage of immutable parsing states
is the fact that the parsers generated byMenhir are reentrant
by construction. As a consequence, multiple instances of our
parser can be running at the same time. This property is
needed because the prelexer can trigger new instances of
the parser to deal with subshell invocations.

Notice that the parsing of subshell invocations are not ter-
minated by a standard end-of-file marker: indeed, they are
usually stopped by the closing delimiter of the subshell in-
vocation. For instance, parsing echo $(date "+%Y%m%d") requires
a subparser to be executed after $(and to stop before).

As it is very hard to delimit correctly subshell invocation
without parsing their content, this subparser is provided the
entire input suffix and it is responsible for finding the end of
this subshell invocation by itself.

The input suffix is never syntactically correct. Thus, when
a subparser encounters the closing delimiter (the closing
parenthesis in our example), it will produce a syntax error.
To tackle this issue, our parser can be run in a special

mode named “longest valid prefix”. In that mode, the parser
returns the longest prefix of the input that is a valid complete
command. This feature is similar to backtracking and is as
easy as implement thanks to immutable parsing states.

3.3.1 Recognizing reserved words
In this section, we describe our technique to handle the
promotion of words to reserved words in a parsing-context
sensitive way as well as the handling of promoted words
which generate syntax errors. As explained earlier, this tech-
nique intensively uses the fact that the parser generated by
Menhir is incremental and purely functional.
Let us first show the code of the function which decides

whether to promote a word into a reserved word:

1 let recognize_reserved_word_if_relevant =

2 fun checkpoint pstart pstop w ->

3 FirstSuccessMonad .(

4 try

5 let kwd = keyword_of_string w in

6 let kwd ' = (kwd , pstart , pstop) in

7 if accepted_token checkpoint kwd ' then

8 return kwd

9 else

10 raise Not_found

11 with Not_found ->

12 if is_name w then

13 return (NAME (CST.Name w))

14 else

15 return (WORD (CST.Word w))

16)

Line 3 declares that this function is in the FirstSuccessMonad, the
details of which are not important here. On line 5, a lookup
in a table detects if the word w is an actual keyword. If not, the
exception Not_found is raised. Otherwise, the corresponding
keyword token kwd is passed to the function accepted_token to
determine if the promotion of w to kwd does not introduce a
syntax error. If the token is not accepted, Not_found is raised.
The exception handler on line 11 classifies w as a name if it
falls into a specific lexical category.

The definition of accepted_token is:
1 let accepted_token checkpoint token =

2 match checkpoint with

3 | InputNeeded _ ->

4 close (offer checkpoint token)

5 | _ ->

6 false

If the parser is in a state where an input is needed we offer
it the token. The resulting new checkpoint is passed to the
following recursive function close to determine if a syntax
error is detected by the parser:
1 let rec close checkpoint = match checkpoint with

2 | AboutToReduce _ -> close (resume checkpoint)

3 | Rejected | HandlingError _ -> false

4 | Accepted _ | InputNeeded _ | Shifting _ -> true

Notice that this function always terminates since the re-
cursive call to close is done just before a reduction which
always consumes some entries at the top of the pushdown
automaton stack.
This speculative parsing solves the problem of reserved

words only partially. Indeed, if a keyword is used where a
cmd_word or a cmd_name is expected, that is as the command of a
simple_command, it must be recognized as a reserved word even
though it generates a syntax error.
Therefore, the function recognize_reserved_word_if_relevant is

counterproductive in that case because it will prevent the
considered word from being promoted to a reserved word
and would fail to detect the expected syntax error. Thanks
to the AboutToReduce case, we are able to detect a posteriori that
a word, which has not been promoted to a reserved word,
has been used to produce a cmd_word or a cmd_name:

1 | AboutToReduce (env , production) -> begin try

2 if lhs production = X (N N_cmd_word)

3 || lhs production = X (N N_cmd_name) then

4 match top env with

5 | Some (Element (state , v, _, _)) ->

6 let analyse_top

7 : type a. a symbol * a -> _ = function

8 | T T_NAME , Name w when is_reserved_word w

9 | T T_WORD , Word w when is_reserved_word w ->

SLE ’18, November 5–6, 2018, Boston, MA, USA Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen

10 raise ParseError

11 | _ -> assert false

12 in analyse_top (incoming_symbol state , v)

13 | _ -> assert false

14 else raise Not_found

15 with Not_found -> parse (resume checkpoint) end

Let us explain this code. First, it is a pattern-matching
branch for the case AboutToReduce. Conceptually, the argument
named env represents the stack of the LR pushdown automa-
ton and the argument named production is a descriptor for
the reduction that is about to happen. On Lines 2 and 3, we
first check that this production is indeed a rule whose left-
hand-side (the produced nonterminal) is either a cmd_name or a
cmd_word. In that case, we extract the topmost element of the
automaton stack: it must be a token NAME or WORD. We just have
to check that the semantic values of these tokens are not
reserved words to determine if a syntax error must be raised
or if the parsing can go on.

3.4 From the code to the POSIX specification
What makes us believe that our approach to implement the
POSIX standard will lead to a parser that can be trusted?
Actually, as the specification is informal, it is impossible to
prove our code formally correct. We actually do not even
claim the absence of bugs in our implementation: this code
is far too immature to believe that.

In our opinion, our approach to develop Morbig is likely
to lead to a trustworthy implementation because (i) its code
is written in such a way that it facilitates code review; (ii) it
includes the formal shell grammar of the POSIX as-is; (iii)
it has been tested with a rigorous method; (iv) it seems to
behave like POSIX-compliant shells.

Code review Comments represent 40% of theMorbig source
code. We tried to quote the POSIX specification related to
each code fragment so that a code reviewer can evaluate the
adequacy between the implementation and its interpretation
of the specification.We also document every implementation
choice we make and we explain the programming technique
used to ease the understanding of the unorthodox part of
the program, typically the speculative parsing.

Cut-and-paste of the official shell grammar We com-
mit ourselves to not modifying the official BNF of the gram-
mar despite its incompleteness or the exotic nine side rules
described earlier. In our opinion, it is a strength of our ap-
proach because this BNF is the most declarative and formal
part of the specification, knowing that our generated parser
recognizes the same language as this BNF is in our opinion
a reason to trust our implementation.

Testsuite Morbig comes with a testsuite which follows
the same structure as the specification: for every section of
the POSIX standard, we have a directory containing the tests
related to that section. At this time, the testsuite is relatively
small since it is only made of 149 tests. A code reviewer may

still be interested by this testsuite to quickly know if some
cornercase of the specification has been tested and, if not, to
contribute to the testsuite by the insertion of a test for this
cornercase.

Comparison to existing shell implementations To dis-
ambiguate several paragraphs of the standard, we have checked
that the behavior of Morbig coincides with the behavior
of shell implementation which are believed to be POSIX-
compliant, typically Dash and Bash (in POSIX mode).

4 Applications
4.1 Shell parsing toolkit
There are two interfaces to the Morbig parser: a Command
Line Interface (CLI) and an Application Programming Inter-
face (API).

The CLI of Morbig is an executable program called morbig.
It takes as input a list of filenames and, for each syntactically
correct input file, it produces a JSON file containing a textual
representation of the concrete syntax tree of the shell script.

To use the API of Morbig, a programmer writes anOCaml
program linked to a library called libmorbig. The parsing API
of Morbig is contains just one function:
1 (** [parse filename] performs the syntactic analysis of

[filename] and returns a concrete syntax tree if

[filename] content is syntactically correct.

2 Raises {SyntaxError (pos , msg)} otherwise. *)

3 val parse : string -> CST.complete_command list

The API is richer when it comes to analyzing and trans-
forming concrete syntax trees. Indeed, in addition to the
type definitions for the concrete syntax trees, the module
CST defines several classes of visitors. The visitor design pat-
tern [10] is an object-oriented programming technique to
define a computation over one or several mutually recursive
object hierarchies. The next section explains the advantages
of defining an analysis with such visitors. In the API, six
classes of visitors are provided: iter to traverse a CST, map
to transform a CST into another CST, reduce to compute a
value by a bottom-up recursive computation on a CST, as
well as iter2, map2 and reduce2which traverse two input CSTs of
similar shapes at the same time. These visitors come for free
as we use a preprocessor [20] which automatically generates
visitors classes out of type definitions.

4.2 An analyzer for Debian maintainer scripts
The original motivation for theMorbig parser comes from a
research project on the development of formal methods for
the verification of the so-called maintainer scripts present
in the Debian GNU/Linux distribution. As a first step of
this project, we need a statistical analysis of the corpus in
order to know what elements of the shell language and what
UNIX commands with which options are mostly used in our
corpus. It is easy to implement such an analysis operating on
the concrete syntax trees produced byMorbig. Individual

Morbig: A Static Parser for POSIX Shell SLE ’18, November 5–6, 2018, Boston, MA, USA

analyzers are written using the visitor design pattern [10]
in order to cope with the 108 distinct cases in the type of
concrete syntax trees.

5 Current limitations and future work
An important issue is how to validate our parser. Counting
the number of scripts that are recognized as being syntac-
tically correct is only a first step since it does not tell us
whether the syntax tree constructed by the parser is the cor-
rect one. We can imagine several ways how the parser can
be validated.

One approach is to write a pretty-printer which sequential-
izes the concrete syntax tree constructed by the parser. The
problem is that our parser has dropped part of the layout
present in the shell script, in particular information about
spaces, and comments. Still, a pretty printer can be useful to
a human when verifying the correct action of the parser on
a particular case of doubt: this is the technique we used to
build our testsuite.
It might also be possible to compare the result obtained

by our pretty-printer with the original script after passing
both through a simple filter that removes comments and nor-
malizes spaces. Furthermore, a pretty-printing functionality
can be used for an automatic smoke test on the complete
corpus: the action which consists of parsing a shell script
and then pretty-printing it must be idempotent, that is per-
forming it twice on a shell script must yield the same result
as performing it once.

Another possible approach is to combine our parser with
an interpreter that executes the concrete syntax tree. This
way, we can compare the result of executing a script obtained
by our interpreter with the result obtained by one of the
existing POSIX shell interpreters.
Finally, the scripts of our corpus may not cover all the

diversity of the shell scripts that can be found in the nature
since they are dedicated to a very specific task, namely pack-
agemaintainance.We are currently working on a new corpus
of 7,5 millions of shell scripts extracted from the archive of
The Software Heritage project[7].

6 Availability and Benchmarks
Morbig is Free Software, published under the GPL3 license.
It is available at https://github.com/colis-anr/morbig and as
an OPAM package.

On a i7-4600U CPU @ 2.10GHz with 4 cores, an SSD hard
drive and 8GB of RAM, it takes 41s4 to parse successfully
the 31521 scripts of the corpus (which represents 99% of the
31832 files of the corpus) and to serialize the correspond
concrete syntax trees on the disk. The average time to parse
a script from the corpus of Debian maintainer scripts is there-
fore 1.3ms (with a standard deviation which is less than 1% of
this duration). The maximum parsing time is 100ms, reached
4Measured with the UNIX /usr/bin/time command.

for the prerm script of package w3c-sgml-lib_1.3-1_all
which is 1121 lines long.

7 Related work
7.1 About the POSIX shell language
Analysis of package maintainer scripts To our knowl-
edge, the only existing attempt to analyze a complete corpus
of package maintainer scripts was done in the context of the
Mancoosi project [6]. An architecture of a software package
installer is proposed that simulates a package installation
on a model of the current system in order to detect possi-
ble failures. The authors have identified 52 templates which
cover completely 64.3% of all the 25.440 maintainer scripts of
the Debian Lenny release. These templates are then used as
building blocks of a DSL that abstracts maintainer scripts. In
this work, a first set of script templates had been extracted
from the relevant Debian toolset (debhelper), and then ex-
tended by clustering scripts using the same statements [8].
The tool used in this works is geared towards comparing
shell scripts with existing snippets of shell scripts, and is
based on purely textual comparisons.

Analysis of shell scripts There have been few attempts to
formalize the shell. Recently, Greenberg [11] has presented
elements of formal semantics of POSIX shell. The work be-
hind Abash [17] contains a formalization of the part of the
semantics concerned with variable expansion and word split-
ting. The Abash tool itself performs abstract interpretation to
analyze possible arguments passed by Bash scripts to UNIX
commands, and thus to identify security vulnerabilities in
Bash scripts. Several tools can spot certain kinds of errors in
shell scripts. The checkbashisms [5] script detects usage of
Bash-specific syntax in shell scripts, it is based on matching
Perl regular expressions against a normalized shell script
text. This tool is currently used in Debian as part of the
lintian package analyzing suite. The tool shellcheck [12]
detects error-prone usage of the shell language. This tool is
written in Haskell with the parser combinator library Parsec.
Therefore, there is no Yacc grammar in the source code to
help us determine how far from the POSIX standard the lan-
guage recognized by shellcheck is. Besides, the tool does
not produce intermediate concrete syntax trees which forces
the analyses to be done on-the-fly during parsing itself. This
approach lacks modularity since the integration of any new
analysis requires the modification of the parser source code.
Nevertheless, as it is hand-crafted, the parser of shellcheck
can keep a fine control on the parsing context: this allows for
the generation of very precise and helpful error messages.
We plan to use the recent new ability [19] of Menhir to
obtain error messages of similar quality.

7.2 About parsing technologies
General parsing frameworks Menhir[21] is based on
a conservative extension of LR(1)[16], inspired by Pager’s

https://github.com/colis-anr/morbig

SLE ’18, November 5–6, 2018, Boston, MA, USA Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen

algorithm[18]: it produces pushdown automata almost as
compact as LALR(1) automatawithout the risk of introducing
LALR(1) conflicts. As a consequence, the resulting parsers
are both efficient (word recognition has a linear complexity)
and reasonable in terms of space usage.
However, the set of LR(1) languages is a strict subset of

the set of context-free languages. For context-free languages
which are not LR(1), there exist well-known algorithms like
Earley’s [4, 9], GLR[24], GLL[22] or general parser combi-
nators [15]. These algorithms can base their decision on an
arbitrary number of lookups, can cope with ambiguous gram-
mars by generating parse forests instead of parse trees, and
generally have a cubic complexity. There also exist parsing
algorithms and specifications that go beyond context-free
grammars, e.g. reflective grammars [23] or data-dependent
grammars [1].

Since the grammar of POSIX shell is ambiguous, one may
wonder why we stick to an LR(1) parser instead of choosing
a more general parsing framework like the ones cited above.
First, as explained in Section 2.4, the POSIX specification
embeds a Yacc grammar specification which is annotated
by rules that change the semantics of this specification, but
only locally by restricting the application of some of the
grammar rules. Hence, if we forget the shift/reduce conflicts
mentioned in Section 2.4, this leads us to think that the au-
thor of the POSIX specification actually have a subset of an
LR(1) grammar in mind. Being able to use an LR(1) parser
generator to parse the POSIX shell language is in our opinion
an indication that this belief is true. Second, even though
we need to implement some form of speculative parsing to
efficiently decide if a word can be promoted to a reserved
word, the level of non-determinism required to implement
this mechanism is quite light. Indeed, it suffices to exploit the
purely functional state of our parser to implement a back-
tracking point just before looking at one or two new tokens
to decide if the context is valid for the promotion, or not. This
machinery is immediately available with the interruptible
and purely functional LR(1) parsers produced byMenhir. In
our opinion, the inherent complexity of generalized parsing
frameworks is not justified in that context.

Scannerless parsing Many legacy languages (e.g. PL/1,
COBOL, FORTRAN, R, . . .) enjoy a syntax which is incom-
patible with the traditional separation between lexical analy-
sis and syntactic analysis. Indeed, when lexical conventions
(typically the recognition of reserved words) interact in a
nontrivial way with the parsing context, the distinction be-
tween lexing and parsing fades away. For this reason, it can
perfectly make sense to implement the lexical conventions
in terms of context-free grammar rules and to mix them with
the language grammar. With some adjustments of the GLR
parsing algorithm to include a longest-match strategy and
with the introduction of specification mechanisms to declare
layout conventions efficiently, the ASF+SDF project[25] has

been able to offer a declarative language to specify modu-
lar scannerless grammar[26] specifications for many legacy
languages with parsing-dependent lexical conventions.

Unfortunately, as said in Section 2.1.1, the lexical conven-
tions of POSIX shell are not only parsing-dependent but also
specified in a “negative way”: POSIX defines token recogni-
tion by characterizing how tokens are delimited, not how
they are recognized. Besides, as shown in Section 2.1.2, the
layout conventions of POSIX shell, especially the handling of
newline characters, are unconventional, hence they hardly
match the use cases of existing scannerless tools. Finally,
lexical conventions depend not only on the parsing context
but also on the nesting context as explained in Section 2.1.4.
For all these reasons, we are unable to determine how these
unconventional lexical rules could be expressed following
the scannerless approach. More generally, it is unclear to
us if the expressivity of ASF+SDF specifications is sufficient
to handle the POSIX shell language without any extra code
written in a general purpose programming language.

Schrödinger’s tokens Schrödinger’s tokens[3] is a tech-
nique to handle parsing-dependent lexical conventions by
means of a superposition of several states on a single lexeme
produced by the lexical analysis. This superposition allows
to delay to parsing time the actual interpretation of an input
string while preserving the separation between the scanner
and the parser. This technique only requires minimal modifi-
cation to parsing engines. Morbig’s promotion of words to
reserved words follows a similar path: the prelexer produces
pretokens which are similar to Schrödinger’s tokens since
they enjoy several potential interpretations at parsing time.
The actual decision about which is the right interpretation
of these pretokens as valid grammar tokens is deferred to
the lexer and obtained by speculative parsing. No modifica-
tion of Menhir’s parsing engine was required thanks to the
incremental interface of the parsers produced by Menhir:
the promotion code can be written on top of this interface.

8 Conclusion
Statically parsing shell scripts is notoriously difficult, due
to the fact that the shell language was not designed with
static analysis in mind. Nevertheless, we found ourselves
in need of a tool that allows us to easily perform a number
of different statistical analyses on a large number of scripts.
We have written a parser that maintains a high level of mod-
ularity, despite the fact that the syntactic analysis of shell
scripts requires an interaction between lexing and parsing
that defies traditional approach.

Acknowledgment
We are grateful to the reviewers of the different versions
of this paper. Their comments helped us to improve the
paper as well as the implementation. We also thank Patricio
Pelliccione and Davide Di Ruscio for discussion of their work

Morbig: A Static Parser for POSIX Shell SLE ’18, November 5–6, 2018, Boston, MA, USA

done in the context of the Mancoosi project. This work has
been supported by the French national research project ANR
CoLiS (contract ANR-15-CE25-0001).

References
[1] A. Afroozeh and A. Izmaylova. Iguana: a practical data-dependent

parsing framework. In Proceedings of the 25th International Conference
on Compiler Construction, pages 267–268. ACM, 2016.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[3] J. Aycock and R. N. Horspool. Schrödinger’s token. Softw., Pract. Exper.,
31:803–814, 2001.

[4] J. Aycock and R. N. Horspool. Practical earley parsing. The Computer
Journal, 45(6):620–630, 2002.

[5] R. Braakman, J. Rodin, J. Gilbey, and M. Hobley. checkbashisms. https:
//sourceforge.net/projects/checkbaskisms/, Nov. 2015.

[6] R. Di Cosmo, D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Za-
cchiroli. Supporting software evolution in component-based FOSS
systems. Science of Computer Programming, 76(12):1144–1160, 2011.

[7] R. Di Cosmo and S. Zacchiroli. Software heritage: Why and how
to preserve software source code. In iPRES 2017: 14th International
Conference on Digital Preservation, 2017.

[8] D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Zacchiroli. Towards
maintainer script modernization in FOSS distributions. In IWOCE 2009:
International Workshop on Open Component Ecosystem, pages 11–20.
ACM, 2009.

[9] J. Earley. An efficient context-free parsing algorithm. Communications
of the ACM, 13(2):94–102, 1970.

[10] E. Gamma. Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[11] M. Greenberg. Understanding the POSIX shell as a programming
language. In Off the Beaten Track 2017, Paris, France, Jan. 2017.

[12] V. Holen. shellcheck. https://github.com/koalaman/shellcheck, 2015.
[13] IEEE and The Open Group. The open group base specifications issue 7.

http://www.unix.org/version3/online.html, 2016.
[14] IEEE and The Open Group. The open group base specifications issue 7.

http://pubs.opengroup.org/onlinepubs/9699919799/, 2018.
[15] A. Izmaylova, A. Afroozeh, and T. v. d. Storm. Practical, general parser

combinators. In Proceedings of the 2016 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pages 1–12. ACM, 2016.

[16] D. E. Knuth. On the translation of languages from left to right. Infor-
mation and control, 8(6):607–639, 1965.

[17] K. Mazurak and S. Zdancewic. ABASH: finding bugs in bash scripts. In
PLAS07: Proceedings of the 2007 workshop on Programming languages
and analysis for security, pages 105–114, San Diego, CA, USA, June
2007.

[18] D. Pager. A practical general method for constructing LR (k) parsers.
Acta Informatica, 7(3):249–268, 1977.

[19] F. Pottier. Reachability and error diagnosis in LR(1) parsers. In Pro-
ceedings of the 25th International Conference on Compiler Construction,
CC 2016, Barcelona, Spain, March 12-18, 2016, pages 88–98, 2016.

[20] F. Pottier. Visitors. http://gallium.inria.fr/~fpottier/visitors/manual.pdf,
2017.

[21] F. Pottier and Y. Régis-Gianas. The Menhir parser generator. See:
http://gallium. inria. fr/fpottier/menhir.

[22] E. Scott and A. Johnstone. GLL parsing. Electronic Notes in Theoretical
Computer Science, 253(7):177–189, 2010.

[23] P. Stansifer and M. Wand. Parsing reflective grammars. In Proceed-
ings of the Eleventh Workshop on Language Descriptions, Tools and
Applications, page 10. ACM, 2011.

[24] M. Tomita and S.-K. Ng. The generalized LR parsing algorithm. In
Generalized LR parsing, pages 1–16. Springer, 1991.

[25] M. G. van den Brand, A. van Deursen, J. Heering, H. De Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder,
et al. The asf+sdf meta-environment: A component-based language
development environment. In International Conference on Compiler
Construction, pages 365–370. Springer, 2001.

[26] E. Visser et al. Scannerless generalized-LR parsing. Universiteit van
Amsterdam. Programming Research Group, 1997.

https://sourceforge.net/projects/checkbaskisms/
https://sourceforge.net/projects/checkbaskisms/
https://github.com/koalaman/shellcheck
http://www.unix.org/version3/online.html
http://pubs.opengroup.org/onlinepubs/9699919799/
http://gallium.inria.fr/~fpottier/visitors/manual.pdf

	Abstract
	1 Introduction
	2 The perils of POSIX shell
	2.1 Non standard lexical conventions
	2.2 Parsing-dependent lexical analysis
	2.3 Evaluation-dependent lexical analysis
	2.4 Ambiguous grammar

	3 Unorthodox parsing
	3.1 A modular architecture
	3.2 Mutually recursive parametric lexers
	3.3 Incremental and purely functional parsing
	3.4 From the code to the POSIX specification

	4 Applications
	4.1 Shell parsing toolkit
	4.2 An analyzer for Debian maintainer scripts

	5 Current limitations and future work
	6 Availability and Benchmarks
	7 Related work
	7.1 About the POSIX shell language
	7.2 About parsing technologies

	8 Conclusion
	References

