Symbolic Execution of Debian Packages

Nicolas Jeannerod
nicolas.jeannerod@irif.fr

joint work with Benedikt Becker, Claude Marché
Yann Régis-Gianas, Mihaela Sighireanu, Ralf Treinen

IRIF, Université de Paris

September 9, 2019

13th Alpine Verification Meeting
Introduction

- CoLiS project: Correctness of Linux Scripts
CoLiS project: Correctness of Linux Scripts

Goal: applying formal methods to the quality assessment of Debian Packages.
Introduction

- CoLiS project: Correctness of Linux Scripts

- Goal: applying formal methods to the quality assessment of Debian Packages.

- Debian: operating system.

- Packages: way to provide (install, update, remove) software.

Goal (reformulated): making sure that installing/updating/removing software does not:
- make other softwares unusable,
- make the whole computer unusable,
- remove your personal files,
- etc.
Introduction

> CoLiS project: Correctness of Linux Scripts

> Goal: applying formal methods to the quality assessment of Debian Packages.

> Debian: operating system.

> Packages: way to provide (install, update, remove) software.

> Goal (reformulated): making sure that installing/updating/removing software does not:
 > make other softwares unusable,
 > make the whole computer unusable,
 > remove your personal files,
 > etc.
Installing a Software on Debian

1. Download the package.
Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
1. Download the package.

2. Execute a pre-installation script.

3. Unpack static archive.
1. Download the package.
2. Execute a pre-installation script.
3. Unpack static archive.
4. Execute a post-installation script.
1. Download the package.

2. Execute a pre-installation script.
 > This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
 > This is a POSIX shell script ran as administrator.
1. Download the package.

2. Execute a pre-installation script.
 > This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
 > This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language
Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
 > This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
 > This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)
Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
 > This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
 > This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything on the system
Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
 > This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
 > This is a POSIX shell script ran as administrator.

POSIX shell:
> scripting language
> legacy (born in 1971)

Administrator:
> can do anything on the system

Complicated and dangerous
Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
 > This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
 > This is a POSIX shell script ran as administrator.

POSIX shell:
> scripting language
> legacy (born in 1971)

Administrator:
> can do anything on the system

Complicated and dangerous. Formal methods?
Our Tools: An Overview

Debian Package

CoLiS

Report
Our Tools: An Overview

Debian Package

Shell script

CoLiS

Specification of the script

Symbolic Engine

Report
Our Tools: An Overview

CoLiS

Debian Package

Shell script

Morbig, Morsmall and ColisFromShell

Colis inter. language

Specification of the script

Symbolic Engine

Report
Our Tools: An Overview

Debian Package

Morbig, Morsmall and ColisFromShell

Symbolic Engine

Specifications of commands

Shell script

Colis inter. language

Specification of the script

Report

CoLiS
Our Tools: An Overview

Debian Package

CoLiS

Shell script

Specification of the script

Morbig, Morsmall and ColisFromShell

Colis inter. language

Symbolic Engine

Specifications of commands

SAT?

SAT solver for specifications

Report
Our Tools: An Overview

Debian Package

Shell script

Specification of the script

Morbig, Morsmall and ColisFromShell

Colis inter. language

Symbolic Engine

Specifications of commands

SAT solver for specifications

Report

Régis-Gianas, J & Treinen
SLE 2018

J, Marché & Treinen
VSTTE 2017
Specifications,
Feature Trees & Constraints
Feature Trees

> Unranked unordered trees;
Feature Trees

- Unranked unordered trees;
- Good models for the UNIX filesystem;
Feature Trees

Unranked unordered trees;

Good models for the UNIX filesystem;

Shell scripts can be seen as programs that modify such trees;
Unranked unordered trees;

Good models for the UNIX filesystem;

Shell scripts can be seen as programs that modify such trees;

Constraints will express relations between such trees.
Atom (Informal) Semantics

From x's tree, through f, we go to y's tree.

In x's tree, there is no f.

The root of x's tree has decoration A.

x's tree can also use features in F.

x and y's trees are similar except in F.
Atom (Informal) Semantics

\[x[f]y \] From \(x \)'s tree, through \(f \), we go to \(y \)'s tree

\[x[f]^\uparrow \] In \(x \)'s tree, there is no \(f \)

\[Ax \] The root of \(x \)'s tree has decoration \(A \)

[Aït-Kaci, Podelski & Smolka 1992]
Constraints On Feature Trees

Atom (Informal) Semantics

\[x[f]y \quad \text{From } x\text{’s tree, through } f, \text{ we go to } y\text{’s tree} \]

\[x[f]^\uparrow \quad \text{In } x\text{’s tree, there is no } f \]

\[Ax \quad \text{The root of } x\text{’s tree has decoration } A \]

\[x[F] \quad x\text{’s tree can also use features in } F \]
Atom (Informal) Semantics

\(x[f]y \) From \(x \)'s tree, through \(f \), we go to \(y \)'s tree

\(x[f]↑ \) In \(x \)'s tree, there is no \(f \)

\(Ax \) The root of \(x \)'s tree has decoration \(A \)

\(x[F] \) \(x \)'s tree can also use features in \(F \)

\(x \sim_F y \) \(x \) and \(y \)'s trees are similar except in \(F \)
Example Specification: mkdir q/f

\[\exists x, x', y'. \]
\[\text{resolve}(r, \text{cwd}, q, x) \wedge \text{dir}(x) \wedge x[f]↑ \]
\[\wedge \text{similar}(r, r', \text{cwd}, q, x, x') \wedge x \sim \{f\} x' \]
\[\wedge \text{dir}(x') \wedge x'[f]y' \wedge \text{dir}(y') \wedge y'[\emptyset] \]

Success

\[\exists y \cdot \text{resolve}(r, \text{cwd}, q/f, y) \wedge r \models r' \]

Error

\[\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \wedge \neg \text{dir}(x) \wedge r \models r' \]
Example Specification: mkdir q/f

\[\exists x, x', y'. \]

\[\text{resolve}(r, cwd, q, x) \land \text{dir}(x) \land x[f] \uparrow \]

\[\land \text{similar}(r, r', cwd, q, x, x') \land x \sim \{f\} x' \]

\[\land \text{dir}(x') \land x'[f]y' \land \text{dir}(y') \land y'[\emptyset] \]

\[\exists y \cdot \text{resolve}(r, cwd, q/f, y) \land y \sim \{f\} y' \]

\[\text{noresolve}(r, cwd, q) \land r = r' \]

\[\exists x \cdot \text{resolve}(r, cwd, q, x) \land \neg \text{dir}(x) \]
Example Specification: mkdir q/f

\[\exists x, x', y'.\]

(resolve(r, cwd, q, x) \land \text{dir}(x) \land x[f] \uparrow
\land \text{similar}(r, r', cwd, q, x, x') \land x \sim \{f\} x'
\land \text{dir}(x') \land x'[f] y' \land \text{dir}(y') \land y'[\emptyset]
\]

Success

\[\exists y \cdot \text{resolve}(r, cwd, q/f, y) \land y[f] \uparrow\]

noresolve(r, cwd, q) \land r \doteq\]

\[\exists x \cdot \text{resolve}(r, cwd, q, x) \land \neg \text{dir}(x)\]
Example Specification: mkdir q/f

\[\exists x, x', y'. \]

\[\text{resolve}(r, \text{cwd}, q, x) \land \text{dir}(x) \land x[f] \uparrow \land \text{similar}(r, r', \text{cwd}, q, x, x') \land x \sim\{f\} x' \land \text{dir}(x') \land x'[f]y' \land \text{dir}(y') \land y'[\emptyset] \]

\[\exists y \cdot \text{resolve}(r, \text{cwd}, q/f, y) \land y \sim\{f\} x' \]

\[\text{noresolve}(r, \text{cwd}, q) \land r \hat{=} \]

\[\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \land \neg \text{dir}(x) \]
Example Specification: \texttt{mkdir q/f}

\exists x, x', y'.

\texttt{resolve}(r, \texttt{cwd}, q, x) \land \texttt{dir}(x) \land x[f] \uparrow \\
\land \texttt{similar}(r, r', \texttt{cwd}, q, x, x') \land x \sim \{f\} x' \\
\land \texttt{dir}(x') \land x'[f]y' \land \texttt{dir}(y') \land y'[\emptyset]

\texttt{Success}

\exists y \cdot \texttt{resolve}(r, \texttt{cwd}, q/f, y) \land \texttt{dir}(y) \land y[f] \downarrow

\texttt{noresolve}(r, \texttt{cwd}, q) \land r \models

\exists x \cdot \texttt{resolve}(r, \texttt{cwd}, q, x) \land \neg \texttt{dir}(x) \\
\models
Example Specification: mkdir q/f

$$\exists x, x', y'.$$

$$\text{resolve}(r, \text{cwd}, q, x) \wedge \text{dir}(x) \wedge x[f] \uparrow$$

$$\wedge \text{similar}(r, r', \text{cwd}, q, x, x') \wedge x \sim \{f\} x'$$

$$\wedge \text{dir}(x') \wedge x'[f]y' \wedge \text{dir}(y') \wedge y'[\emptyset]$$

\[\text{Success}\]

$$\exists y \cdot \text{resolve}(r, \text{cwd}, q/f, y) \wedge r \overset{(\text{dir})}{\sim}$$

\[\text{noresolve}(r, \text{cwd}, q) \wedge r \overset{(\text{dir})}{\not\sim}\]

$$\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \wedge \neg \text{dir}(x)$$
Example Specification: mkdir q/f

\[\exists x, x', y'.\]

\[\text{resolve}(r, \text{cwd}, q, x) \land \text{dir}(x) \land x[f] \uparrow\]
\[\land \text{similar}(r, r', \text{cwd}, q, x, x') \land x \sim \{f\} x'\]
\[\land \text{dir}(x') \land x'[f]y' \land \text{dir}(y') \land y'[\emptyset]\]

\[\exists y \cdot \text{resolve}(r, \text{cwd}, q/f, y) \land \text{dir}(y)\]

\[\text{noresolve}(r, \text{cwd}, q) \land r \dashv\]

\[\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \land \neg \text{dir}(x)\]
Example Specification: mkdir q/f

∃x, x', y'.

\[\text{resolve}(r, \text{cwd}, q, x) \land \text{dir}(x) \land x[f] \uparrow \]
\[\land \text{similar}(r, r', \text{cwd}, q, x, x') \land x \sim \{f\} x' \]
\[\land \text{dir}(x') \land x'[f]y' \land \text{dir}(y') \land y'[\emptyset] \]

\[\exists y \cdot \text{resolve}(r, \text{cwd}, q/f, y) \land r' \]
\[\text{noresolve}(r, \text{cwd}, q) \land r \]
\[\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \land \neg \text{dir}(x) \]

\[r \cdots \sim \{q\} \cdots r' \]
\[q \]
\[\exists x \cdots \sim \{f\} \cdots \exists x' \]
\[f \]
\[\perp \]
Example Specification: mkdir q/f

\[\exists x, x', y'. \]

\[\text{resolve}(r, \text{cwd}, q, x) \land \text{dir}(x) \land x[f] \uparrow \land \text{similar}(r, r', \text{cwd}, q, x, x') \land x \sim \{f\} x' \land \text{dir}(x') \land x'[f]y' \land \text{dir}(y') \land y'[\emptyset] \]

Success

\[\exists y \cdot \text{resolve}(r, \text{cwd}, q/f, y) \land \text{noresolve}(r, \text{cwd}, q) \land r \vdash \]

\[\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \land \neg \text{dir}(x) \]

\[r \ldots \sim \{q\} \ldots r' \]
\[q \[
\exists x \ldots \sim \{f\} \ldots \exists x' \]
\[f \[
\exists y' \]
Example Specification: mkdir q/f

\[\exists x, x', y'. \]

\[
\text{resolve}(r, \text{cwd}, q, x) \land \text{dir}(x) \land x[f] \uparrow \\
\land \text{similar}(r, r', \text{cwd}, q, x, x') \land x \sim \{f\} x' \\
\land \text{dir}(x') \land x'[f]y' \land \text{dir}(y') \land y'[\emptyset]
\]

Success

\[\exists y \cdot \text{resolve}(r, \text{cwd}, q/f, y) \land y[f] \downarrow \]

noresolve(r, cwd, q) \land r \Downarrow

\[\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \land \neg \text{dir}(x) \land r \Downarrow \]

\[\exists x \cdot \text{resolve}(r, \text{cwd}, q, x) \land \neg \text{dir}(x) \land r \Downarrow \]

\[\exists y' \cdot \text{empty dir} \]

\[r \overset{\sim}{\rightarrow} \{q\} \overset{\sim}{\rightarrow} r' \]

\[q \]

\[\exists x \overset{\sim}{\rightarrow} \{f\} \overset{\sim}{\rightarrow} \exists x' \]

\[f \]

\[\exists y' \overset{(\emptyset \text{ dir})}{\rightarrow} \]

\[\exists x \overset{(\text{dir})}{\rightarrow} \]

\[\exists y' \overset{(\text{empty dir})}{\rightarrow} \]
Symbolic Execution
Symbolic Execution

```bash
if [ -e foo ]; then
    rm foo
fi
```
Symbolic Execution

```sh
if [ -e foo ]; then
  rm foo
fi
```

In progress

```
In progress

r
```
Symbolic Execution

```bash
if [ -e foo ]; then
    rm foo
fi
```

Case 1
Success

```
r = r'
  foo
  /
  └─ 
```

In progress

```
r
  foo
  /
  └─ x
```
Symbolic Execution

```bash
if [ -e foo ]; then
  rm foo
fi
```

Case 1
Success

```
r = r'
foo
⊥
```

Case 2
Success

```
r ≈_{foo} r'
foo
X (¬dir)
⊥
```

Case 3
Error

```
r = r'
foo
X (dir)
```
Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo
Chaining Specifications

```plaintext
mkdir /usr/lib ; mkdir /usr/lib/foo
```

```
usr
\downarrow
lib
```

```
usr
\downarrow
\{usr\}
```

```
lib
\downarrow
\{lib\}
```

```
x_1 \sim \{lib\} \cdots x_1'
```

```
usr
\downarrow
\{usr\}
```

```
r_1 \cdots \sim \{usr\} \cdots r_1'
```

```
usr
\downarrow
\{usr\}
```

```
y_1'[\emptyset]
```

[J & Treinen, IJCAR 2018]
Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

$r_1 \cdots \sim \{\text{usr}\} \cdots r_1'$

usr

\hline

usr

$\sim\{\text{lib}\}$

\hline

lib

\hline

lib

\hline

$y_1'[\emptyset]$

\hline

$y_2'[\emptyset]$

\hline

foo

\hline

foo

\hline

$z_2'[\emptyset]$
Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

\[
\begin{array}{c}
\text{usr} \quad \sim \{\text{usr}\} \\
x_1 \quad \sim \{\text{lib}\} \\
\text{lib} \\
\downarrow \\
y_1'[\emptyset]
\end{array}
\quad \quad \quad
\begin{array}{c}
\text{usr} \\
x_1' \\
\text{lib} \\
\downarrow \\
y_1'[\emptyset]
\end{array}
\quad \quad \quad
\begin{array}{c}
\text{usr} \quad \sim \{\text{usr}\} \\
x_2 \quad \sim \{\text{lib}\} \\
\text{lib} \\
\downarrow \\
y_2'[\emptyset]
\end{array}
\quad \quad \quad
\begin{array}{c}
\text{usr} \quad \sim \{\text{lib}\} \\
x_2' \\
\text{lib} \\
\downarrow \\
y_2'[\emptyset]
\end{array}
\]

[J & Treinen, IJCAR 2018]
mkdir /usr/lib ; mkdir /usr/lib/foo

\[
\begin{array}{c}
\text{usr} \\
x_1 \sim \{\text{lib}\} \\
\downarrow \\
\text{lib} \\
\end{array}
\quad
\begin{array}{c}
\text{usr} \\
x_1' \sim \emptyset \\
\downarrow \\
\text{y}_1'\emptyset \\
\end{array}
\quad
\begin{array}{c}
\text{usr} \\
x_2 \sim \{\text{lib}\} \\
\downarrow \\
\text{lib} \\
\end{array}
\quad
\begin{array}{c}
\text{usr} \\
x_2' \sim \emptyset \\
\downarrow \\
\text{y}_2'\emptyset \\
\end{array}
\quad
\begin{array}{c}
\text{usr} \\
x_{12} \sim \{\text{usr}\} \\
\downarrow \\
\text{usr} \\
\end{array}
\quad
\begin{array}{c}
\text{usr} \\
x_{12}' \sim \emptyset \\
\downarrow \\
\text{z}_2'\emptyset \\
\end{array}
\end{array}
\]
Chaining Specifications

```
mkdir /usr/lib  ;  mkdir /usr/lib/foo
```

![Diagram of Chaining Specifications]
Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

\[
\begin{align*}
& \quad r_1 \cdots \sim \{\text{usr}\} \cdots r_{12} \cdots \sim \{\text{usr}\} \cdots r'_2 \\
& \quad \text{usr} \quad \cdots \sim \{\text{lib}\} \cdots \text{usr} \quad \cdots \sim \{\text{lib}\} \cdots \text{usr} \\
& \quad x_1 \quad \cdots \sim \{\text{lib}\} \cdots x_{12} \quad \cdots \sim \{\text{lib}\} \cdots x'_2 \\
& \quad \text{lib} \quad \cdots \sim \{\text{foo}\} \cdots \text{lib} \quad \cdots \sim \{\text{foo}\} \cdots \text{lib} \\
& \quad y_{12}[\emptyset] \quad \cdots \sim \{\text{foo}\} \cdots y'_2 \\
& \quad \text{usr} \quad \cdots \sim \{\text{lib}\} \cdots \text{usr} \quad \cdots \sim \{\text{lib}\} \cdots \text{usr} \\
& \quad z'_2[\emptyset]
\end{align*}
\]
Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

\[r_1 \sim \{\text{usr}\} \quad r_{12} \sim \{\text{usr}\} \quad r_2' \quad \sim \{\text{usr}\} \\]

\[\sim \{\text{lib}\} \quad \sim \{\text{lib}\} \quad \sim \{\text{lib}\} \quad \sim \{\text{lib}\} \quad \sim \{\text{foo}\} \quad \sim \{\text{foo}\} \quad \sim \{\text{foo}\} \quad \sim \{\text{foo}\} \\]

\[y_{12}[\emptyset] \quad y_2' \quad z_2'[\emptyset] \\]

\[x_1 \quad x_{12} \quad x_2' \]\n
\[\begin{align*}
usr & \quad \sim \{\text{usr}\} & \quad \sim \{\text{usr}\} & \quad \sim \{\text{usr}\} & \quad \sim \{\text{usr}\} \\
lib & \quad \sim \{\text{lib}\} & \quad \sim \{\text{lib}\} & \quad \sim \{\text{lib}\} & \quad \sim \{\text{lib}\} \\
fo \o & \quad \sim \{\text{foo}\} & \quad \sim \{\text{foo}\} & \quad \sim \{\text{foo}\} & \quad \sim \{\text{foo}\} \\
\emptyset & \quad \sim \{\emptyset\} & \quad \sim \{\emptyset\} & \quad \sim \{\emptyset\} & \quad \sim \{\emptyset\} \\
\end{align*} \]

\[\text{J & Treinen, IJCAR 2018} \]
mkdir /usr/lib ; mkdir /usr/lib/foo
mkdir /usr/lib ; mkdir /usr/lib/foo

[J & Treinen, IJCAR 2018]
Report > oz

Meta
Start time
2019-07-20 21:41:15
End time
2019-07-20 21:41:15
Duration
0s

Parsing
Name
oz
Version
0.16.0-2
Maintainer scripts
postinst
OK
prerm
Rejected by conversion unsupported feature: (word_component)
postrm
OK
Installation Scenario

Scenarios

Installation

- preinst install
 - OK
 - Failed

 unpack
 - OK
 - Failed

 postinst configure
 - OK
 - Failed

 unsup. utility
 - Installed
 - (0 states)
 - Failed-Config
 - (0 states)

 postrm abort-install
 - OK
 - Failed

 Not-Installed
 - (0 states)
 Half-Installed
 - (0 states)

Removal
An Other Scenario

Idempotency of `postrm purge`

- `postrm remove`
 - OK: OSEF (1 states)
 - Failed: Non-Idempotent (0 states)

- `postrm remove`
 - OK: OSEF (0 states)
 - Failed: Non-Idempotent (0 states)

- `postrm purge`
 - OK: OSEF (2 states)
 - Failed: Non-Idempotent (0 states)

- `postrm purge`
 - OK: Non-Idempotent (1 states)
 - Failed: OSEF (0 states)

OSEF
0 1
Non-Idempotent
0
An Execution Case

log

[UTL] test 'purge' = 'purge': strings are equal
[UTL] test -f /etc/oz/id_rsa-icicle-gen: path resolves to file of type 'f'
[UTL] rm /etc/oz/id_rsa-icicle-gen: remove file
[UTL] rm /etc/oz/id_rsa-icicle-gen.pub: target does not exist or is a directory
[UTL] test -f /etc/oz/id_rsa-icicle-gen.pub: target does not exist or is a directory
The postrm Script

Original Shell script

```bash
#!/bin/sh

set -e

FILE="/etc/oz/id_rsa-icicle-gen"

case "$1" in
   purge)
      if [ -f $FILE ]; then
         rm $FILE $FILE.pub
      fi
   ;;
   remove|upgrade|failed-upgrade|abort-install|abort-upgrade|disappear)
      ;;
   *)
      echo "postrm called with unknown argument \"$1\"" >&2
         exit 1
   ;;
   esac

# dh_installdeb will replace this with shell code automatically
# generated by other debhelper scripts.
```
Conclusion

> Demo report accessible from my website:
> http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
> Webpage: http://colis.irif.fr/
> Tools: https://github.com/colis-anr/

So far, 148 bugs found and reported to Debian;
Several talks at DebConf;
The Debian maintainers are very enthusiastic!

Future work: support more packages
Support more shell constructs,
Add more command specifications,
Improve the constraint solver;

Thank you for your attention!
Conclusion

> Demo report accessible from my website: http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
 > Webpage: http://colis.irif.fr/
 > Tools: https://github.com/colis-anr/

So far, 148 bugs found and reported to Debian;
Several talks at DebConf;
The Debian maintainers are very enthusiastic!

Future work: support more packages
Support more shell constructs,
Add more command specifications,
Improve the constraint solver;

Thank you for your attention!
Conclusion

> Demo report accessible from my website: http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
 > Webpage: http://colis.irif.fr/
 > Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;
> Several talks at DebConf;
 The Debian maintainers are very enthusiastic!
Conclusion

> Demo report accessible from my website: http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
 > Webpage: http://colis.irif.fr/
 > Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;

> Several talks at DebConf;
 The Debian maintainers are very enthusiastic!

> Future work: support more packages
 > Support more shell constructs,
 > Add more command specifications,
 > Improve the constraint solver;
Conclusion

> Demo report accessible from my website: http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
 > Webpage: http://colis.irif.fr/
 > Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;

> Several talks at DebConf;
 The Debian maintainers are very enthusiastic!

> Future work: support more packages
 > Support more shell constructs,
 > Add more command specifications,
 > Improve the constraint solver;

> Thank you for your attention!